【題目】如圖所示,已知多面體
中,四邊形
為菱形,
為正四面體,且
.
![]()
(1)求證:
平面
;
(2)求二面角
的余弦值.
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓
的方程為
,斜率為
的直線
與橢圓
交于
,
兩點,點
在直線
的左上方.
(1)若以
為直徑的圓恰好經(jīng)過橢圓右焦點
,求此時直線
的方程;
(2)求證:
的內(nèi)切圓的圓心在定直線
上.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】現(xiàn)有甲、乙、丙、丁、戊5種在線教學軟件,若某學校要從中隨機選取3種作為教師“停課不停學”的教學工具,則其中甲、乙、丙至多有2種被選取的概率為( )
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(1)已知f(x)=x3+3ax2+bx+a2在x=-1時有極值0,求常數(shù)a,b的值;
(2)設(shè)函數(shù)g(x)=x3-6x+5,x∈R. 若關(guān)于x的方程g(x)=m有三個不同的實根,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】隨著運動app和手環(huán)的普及和應(yīng)用,在朋友圈、運動圈中出現(xiàn)了每天1萬步的健身打卡現(xiàn)象,“日行一萬步,健康一輩子”的觀念廣泛流傳.“健步達人”小王某天統(tǒng)計了他朋友圈中所有好友(共500人)的走路步數(shù),并整理成下表:
分組(單位:千步) |
|
|
|
|
|
|
|
|
頻數(shù) | 60 | 240 | 100 | 60 | 20 | 18 | 0 | 2 |
(1)請估算這一天小王朋友圈中好友走路步數(shù)的平均數(shù)(同一組中數(shù)據(jù)以這組數(shù)據(jù)所在區(qū)間中點值作代表);
(2)若用
表示事件“走路步數(shù)低于平均步數(shù)”,試估計事件
發(fā)生的概率;
(3)若稱每天走路不少于8千步的人為“健步達人”,小王朋友圈中歲數(shù)在40歲以上的中老年人共有300人,其中健步達人恰有150人,請?zhí)顚懴旅?/span>
列聯(lián)表.根據(jù)列聯(lián)表判斷,有多大把握認為,健步達人與年齡有關(guān)?
健步達人 | 非健步達人 | 合計 | |
40歲以上 | |||
不超過40歲 | |||
合計 |
附:
.
| 0.050 | 0.010 | 0.001 |
| 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,邊長為a的空間四邊形ABCD中,∠BCD=90°,平面ABD⊥平面BCD,則異面直線AD與BC所成角的大小為( )
![]()
A. 30°B. 45°C. 60°D. 90°
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系
中,
為拋物線
上不同的兩點,且
,點![]()
且
于點
.
(1)求
的值;
(2)過
軸上一點
的直線
交
于
,
兩點,
在
的準線上的射影分別為
,
為
的焦點,若
,求
中點
的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}滿足a1=1,an=
(n∈N*,n≥2),數(shù)列{bn}滿足關(guān)系式bn=
(n∈N*).
(1)求證:數(shù)列{bn}為等差數(shù)列;
(2)求數(shù)列{an}的通項公式.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系
中,以原點
為極點,
軸正半軸為極軸建立極坐標系.已知直線
的極坐標方程為
,曲線
的極坐標方程為
.
(1)寫出直線
和曲線
的直角坐標方程;
(2)過動點
且平行于
的直線交曲線
于
兩點,若
,求動點
到直線
的最近距離.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com