| A. | 函數(shù)f(x)的最小正周期是2π | |
| B. | 函數(shù)f(x)的圖象可由函數(shù)g(x)=2sin2x的圖象向右平移$\frac{π}{3}$個(gè)單位長(zhǎng)度得到 | |
| C. | 函數(shù)f(x)的圖象關(guān)于直線x=-$\frac{π}{12}$對(duì)稱 | |
| D. | 函數(shù)f(x)在區(qū)間[-$\frac{7π}{12}$+kπ,-$\frac{π}{12}$+kπ](k∈Z)上是增函數(shù) |
分析 根據(jù)圖象的兩個(gè)點(diǎn)A、B的橫坐標(biāo),得到四分之三個(gè)周期的值,得到周期的值,做出ω的值,把圖象所過(guò)的一個(gè)點(diǎn)的坐標(biāo)代入方程做出初相,寫出解析式,利用正弦函數(shù)的圖象和性質(zhì)即可得解.
解答 解:由圖象可以看出正弦函數(shù)的四分之三個(gè)周期是$\frac{5π}{12}$-(-$\frac{π}{3}$)=$\frac{3π}{4}$,
∴T=$\frac{2π}{ω}$=π,故A不正確;
∴ω=2,
又由函數(shù)f(x)的圖象經(jīng)過(guò)($\frac{5π}{12}$,2)
∴2=2sin(2×$\frac{5π}{12}$+φ)
∴$\frac{5π}{6}$+φ=2kπ+$\frac{π}{2}$,(k∈Z),
即φ=2kπ-$\frac{π}{3}$
又由-$\frac{π}{2}$<φ<$\frac{π}{2}$,則φ=-$\frac{π}{3}$,
∴函數(shù)解析式為:f(x)=2sin(2x-$\frac{π}{3}$).
由g(x-$\frac{π}{3}$)=2sin2(x-$\frac{π}{3}$)=2sin(2x-$\frac{2π}{3}$)≠f(x),故B不正確;
由f(-$\frac{π}{12}$)=2sin[2×(-$\frac{π}{12}$)-$\frac{π}{3}$]=-2,故C正確;
由2kπ-$\frac{π}{2}$≤2x-$\frac{π}{3}$≤2kπ+$\frac{π}{2}$,k∈Z,即可解得單調(diào)遞增區(qū)間為:[-$\frac{π}{12}$+kπ.kπ+$\frac{5π}{12}$],k∈Z,故D不正確;
故選:C.
點(diǎn)評(píng) 本題考查有部分圖象確定函數(shù)的解析式,考查了正弦函數(shù)的圖象和性質(zhì),本題解題的關(guān)鍵是確定初相的值,這里利用代入點(diǎn)的坐標(biāo)求出初相.屬于中檔題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 外心 | B. | 內(nèi)心 | C. | 重心 | D. | 垂心 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 4條 | B. | 3條 | C. | 2條 | D. | 1條 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com