已知函數(shù)
,
(其中
,
),且函數(shù)
的圖象在 點(diǎn)
處的切線與函數(shù)
的圖象在點(diǎn)
處的切線重合.
(Ⅰ)求實(shí)數(shù)a,b的值;
(Ⅱ)若
,滿足
,求實(shí)數(shù)m的取值范圍;
(1)
,
(2)![]()
【解析】
試題分析:解:(Ⅰ)∵
,∴
,
則
在點(diǎn)
處切線的斜率
,切點(diǎn)
,
則
在點(diǎn)
處切線方程為
, 2分
又
,∴
,
則
在點(diǎn)
處切線的斜率
,切點(diǎn)
,
則
在點(diǎn)
處切線方程為
, 4分
由
解得
,
. 6分
(Ⅱ)由
得
,故
在
上有解,
令
,只需
. 8分
①當(dāng)
時(shí),
,所以
; 10分
②當(dāng)
時(shí),∵
,
∵
,∴
,
,∴
,
故
,即函數(shù)
在區(qū)間
上單調(diào)遞減,
所以
,此時(shí)
. 13分
綜合①②得實(shí)數(shù)m的取值范圍是
. 14分
考點(diǎn):導(dǎo)數(shù)的運(yùn)用
點(diǎn)評(píng):解決的關(guān)鍵是對(duì)于導(dǎo)數(shù)的符號(hào)與函數(shù)單調(diào)性的關(guān)系的運(yùn)用,屬于基礎(chǔ)題。
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
(1)求ω的取值范圍;
(2)在△ABC中,a、b、c分別是角A、B、C的對(duì)邊,a=
,b+c=3(b>c),當(dāng)ω最大時(shí),f(A)=1,求邊b,c的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年浙江省五校聯(lián)盟高三下學(xué)期第一次聯(lián)考文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知
,函數(shù)
,
,(其中e是自然對(duì)數(shù)的底數(shù),為常數(shù)),
(1)當(dāng)
時(shí),求
的單調(diào)區(qū)間與極值;
(2)是否存在實(shí)數(shù)
,使得
的最小值為3. 若存在,求出
的值,若不存在,說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年廣東省等三校高三2月月考數(shù)學(xué)文卷 題型:解答題
(本小題滿分14分)
已知函數(shù)
,
.(其中
為自然對(duì)數(shù)的底數(shù)),
(Ⅰ)設(shè)曲線
在
處的切線與直線
垂直,求
的值;
(Ⅱ)若對(duì)于任意實(shí)數(shù)
≥0,
恒成立,試確定實(shí)數(shù)
的取值范圍;
(Ⅲ)當(dāng)
時(shí),是否存在實(shí)數(shù)
,使曲線C:
在點(diǎn)![]()
處的切線與
軸垂直?若存在,求出
的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年天津市高三十校聯(lián)考理科數(shù)學(xué) 題型:解答題
.(14分)已知函數(shù)
,
,其中![]()
(Ⅰ)若
是函數(shù)
的極值點(diǎn),求實(shí)數(shù)
的值
(Ⅱ)若對(duì)任意的
(
為自然對(duì)數(shù)的底數(shù))都有
≥
成立,求實(shí)數(shù)
的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆云南省高一期末考試數(shù)學(xué)試卷 題型:解答題
已知函數(shù)
,
(其中
)的周期為π,且圖象上一個(gè)最低點(diǎn)為
。
(1)求
的解析式;
(2)當(dāng)
時(shí),求
的最值
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com