【題目】寫出與α=-1910°終邊相同的角的集合,并把集合中適合不等式-720°≤β<360°的元素β寫出來(lái).
【答案】{β|β=k·360°-1 910°,k∈Z};元素β見(jiàn)解析
【解析】
把α=-1 910°加上
可得與α=-1 910°終邊相同的角的集合,分別取k=4,5,6,求得適合不等式-720°≤β<360°的元素β.
與α=-1 910°終邊相同的角的集合為{β|β=k·360°-1910°,k∈Z}.
∵-720°≤β<360°,即-720°≤k·360°-1 910°<360°(k∈Z),∴
(k∈Z),故取k=4,5,6.
k=4時(shí),β=4×360°-1910°=-470°;
k=5時(shí),β=5×360°-1910°=-110°;
k=6時(shí),β=6×360°-1910°=250°.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某次文藝匯演,要將A、B、C、D、E、F這六個(gè)不同節(jié)目編排成節(jié)目單,如下表:
![]()
如果A、B兩個(gè)節(jié)目要相鄰,且都不排在第3號(hào)位置,則節(jié)目單上不同的排序方式有( 。┓N
A. 192 B. 144 C. 96 D. 72
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2017年5月,來(lái)自“一帶一路”沿線的
國(guó)青年評(píng)選出了中國(guó)的“新四大發(fā)明”:高鐵、掃碼支付、共享單車和網(wǎng)購(gòu).為發(fā)展業(yè)務(wù),某調(diào)研組對(duì)
兩個(gè)公司的掃碼支付準(zhǔn)備從國(guó)內(nèi)
個(gè)人口超過(guò)
萬(wàn)的超大城市和
個(gè)人口低于
萬(wàn)的小城市隨機(jī)抽取若干個(gè)進(jìn)行統(tǒng)計(jì),若一次抽取
個(gè)城市,全是小城市的概率為
.
(I)求
的值;
(Ⅱ)若一次抽取
個(gè)城市,則:
①假設(shè)取出小城市的個(gè)數(shù)為
,求
的分布列和期望;
②取出
個(gè)城市是同一類城市求全為超大城市的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】峰谷電是目前在城市居民當(dāng)中開展的一種電價(jià)類別.它是將一天24小時(shí)劃分成兩個(gè)時(shí)間段,把8:00—22:00共14小時(shí)稱為峰段,執(zhí)行峰電價(jià),即電價(jià)上調(diào);22:00—次日8:00共10個(gè)小時(shí)稱為谷段,執(zhí)行谷電價(jià),即電價(jià)下調(diào).為了進(jìn)一步了解民眾對(duì)峰谷電價(jià)的使用情況,從某市一小區(qū)隨機(jī)抽取了50 戶住戶進(jìn)行夏季用電情況調(diào)查,各戶月平均用電量以
,
,
,
,
,
(單位:度)分組的頻率分布直方圖如下圖:
![]()
若將小區(qū)月平均用電量不低于700度的住戶稱為“大用戶”,月平均用電量低于700度的住戶稱為“一般用戶”.其中,使用峰谷電價(jià)的戶數(shù)如下表:
月平均用電量(度) |
|
|
|
|
|
|
使用峰谷電價(jià)的戶數(shù) | 3 | 9 | 13 | 7 | 2 | 1 |
(1)估計(jì)所抽取的 50戶的月均用電量的眾數(shù)和平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);
(2)(
)將“一般用戶”和“大用戶”的戶數(shù)填入下面
的列聯(lián)表:
一般用戶 | 大用戶 | |
使用峰谷電價(jià)的用戶 | ||
不使用峰谷電價(jià)的用戶 |
(
)根據(jù)(
)中的列聯(lián)表,能否有
的把握認(rèn)為 “用電量的高低”與“使用峰谷電價(jià)”有關(guān)?
| 0.025 | 0.010 | 0.001 |
| 5.024 | 6.635 | 10.828 |
附:
,
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知三角形兩邊長(zhǎng)分別為
和
,第三邊上的中線長(zhǎng)為
,則三角形的外接圓半徑為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓
的離心率為
,且過(guò)點(diǎn)
.直線
與
交于
,
兩點(diǎn),點(diǎn)
是
的左焦點(diǎn).
(1)求橢圓
的方程;
(2)若
過(guò)點(diǎn)
且不與
軸重合,求
面積
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在如圖所示的幾何體中,四邊形
是等腰梯形,
,
,
平面
,
,
.
![]()
(
)求證:
平面
.
(
)求二面角
的余弦值.
(
)在線段
(含端點(diǎn))上,是否存在一點(diǎn)
,使得
平面
,若存在,求出
的值;若不存在,請(qǐng)說(shuō)明理由.
【答案】(
)見(jiàn)解析;(
)
;(
)存在, ![]()
【解析】試題分析:(1)由題意,證明
,
,證明
面
;(2)建立空間直角坐標(biāo)系,求平面
和平面
的法向量,解得余弦值為
;(3)得
,
,所以
,
,所以存在
為
中點(diǎn).
試題解析:
(
)∵
,
,∴
.
∵
,∴
,∴
,
.
∵
,且
,
、
面
,∴
面
.
(
)知
,∴
.
∵
面
,
,
,
兩兩垂直,以
為坐標(biāo)原點(diǎn),
以
,
,
為
,
,
軸建系.
設(shè)
,則
,
,
,
,
,
∴
,
.
設(shè)
的一個(gè)法向量為
,
∴
,取
,則
.
由于
是面
的法向量,
則
.
∵二面角
為銳二面角,∴余弦值為
.
(
)存在點(diǎn)
.
設(shè)
,
,
∴
,
,
,
∴
,
.
∵
面
,
.
若
面
,∴
,
∴
,
∴
,∴
,∴存在
為
中點(diǎn).
![]()
【題型】解答題
【結(jié)束】
19
【題目】已知函數(shù)
.
(
)當(dāng)
時(shí),求此函數(shù)對(duì)應(yīng)的曲線在
處的切線方程.
(
)求函數(shù)
的單調(diào)區(qū)間.
(
)對(duì)
,不等式
恒成立,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形
是直角梯形,其中
,
,
.點(diǎn)
是
的中點(diǎn),將
沿
折起如圖,使得
平面
.點(diǎn)
、
分別是線段
、
的中點(diǎn).
![]()
(1)求證:
;
(2)求三棱錐
的體積
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)
.
(1)當(dāng)
時(shí),討論
的單調(diào)性;
(2)若函數(shù)
有兩個(gè)極值點(diǎn)
,且
,證明:
.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com