| A. | $(\frac{1}{2},\frac{2}{3})$ | B. | ($\frac{1}{4}$,$\frac{2}{3}$) | C. | ($\frac{1}{5}$,$\frac{1}{3}$) | D. | ($\frac{1}{3}$,$\frac{2}{3}$) |
分析 根據(jù)偶函數(shù)的定義域關(guān)于原點(diǎn)對稱便可得出a=1,定義域便為[-2,2],f(x)在x≥0時(shí)單調(diào)遞增,從而可以得到$\left\{\begin{array}{l}{-2≤2x-1≤2}\\{|2x-1|<\frac{1}{3}}\end{array}\right.$,解該不等式組即可得出x的取值范圍.
解答 解:f(x)為定義在[2a-4,a+1]上的偶函數(shù);
∴2a-4+a+1=0;
∴a=1;
∴f(x)定義域?yàn)閇-2,2];
x≥0時(shí),f(x)單調(diào)遞增;
∴由f(2x-1)$<f(\frac{1}{3})$得:$\left\{\begin{array}{l}{-2≤2x-1≤2}\\{|2x-1|<\frac{1}{3}}\end{array}\right.$;
解得$\frac{1}{3}<x<\frac{2}{3}$;
∴x的取值范圍為($\frac{1}{3},\frac{2}{3}$).
故選D.
點(diǎn)評 考查偶函數(shù)的定義,偶函數(shù)的定義域的特點(diǎn),偶函數(shù)圖象的對稱性,以及解絕對值不等式.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | {a}⊆M | B. | a⊆M | C. | {a}∈M | D. | a∉M |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | p∧q | B. | p∨q | C. | p∧(¬q) | D. | (¬p)∧(¬q) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 充分必要 | B. | 充分不必要 | C. | 必要不充分 | D. | 不充分不必要 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com