| A. | [1,2] | B. | $[\frac{1}{2},2]$ | C. | $[\frac{1}{2},2016]$ | D. | R |
分析 根據(jù)“倒函數(shù)”的定義,建立兩個(gè)方程關(guān)系,根據(jù)方程關(guān)系判斷函數(shù)的周期性,利用函數(shù)的周期性和函數(shù)的關(guān)系進(jìn)行求解即可得到結(jié)論.
解答 解:若函數(shù)f(x)是關(guān)于0和1的“倒函數(shù)”,
則f(x)•f(-x)=1,則f(x)≠0,
且f(1+x)•f(1-x)=1,
即f(2+x)•f(-x)=1,
即f(2+x)•f(-x)=1=f(x)•f(-x),
則f(2+x)=f(x),
即函數(shù)f(x)是周期為2的周期函數(shù),
若x∈[0,1],則-x∈[-1,0],2-x∈[1,2],此時(shí)1≤f(x)≤2
∵f(x)•f(-x)=1,
∴f(-x)=$\frac{1}{f(x)}$∈[$\frac{1}{2}$,1],
∵f(-x)=f(2-x)∈[$\frac{1}{2}$,1],
∴當(dāng)x∈[1,2]時(shí),f(x)∈[$\frac{1}{2}$,1].
即一個(gè)周期內(nèi)當(dāng)x∈[0,2]時(shí),f(x)∈[$\frac{1}{2}$,2].
∴當(dāng)x∈[-2016,2016]時(shí),f(x)∈[$\frac{1}{2}$,2].
故選:B.
點(diǎn)評(píng) 本題主要考查抽象函數(shù)的應(yīng)用,根據(jù)“倒函數(shù)”,的定義建立方程關(guān)系判斷函數(shù)的周期性是解決本題的關(guān)鍵.綜合性較強(qiáng),有一定的難度.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | -$\frac{1}{2}$ | B. | -$\frac{\sqrt{3}}{2}$ | C. | $\frac{1}{2}$ | D. | $\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | x=3,y=10 | B. | x=6,y=10 | C. | x=3,y=15 | D. | x=6,y=15 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | {1} | B. | {2} | C. | {3,4} | D. | {1,2,3,4} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | $g(x)=\sqrt{x}$ | B. | $g(x)=\sqrt{x+4}$ | C. | g(x)=x2+1 | D. | g(x)=x2+4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | y=-$\frac{1}{x}$ | B. | y=ln(x+5) | C. | y=x2-1 | D. | y=x|x| |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com