欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

如圖,三棱錐P-ABC中,PC⊥平面ABC,PC=AC=2,AB=BC,D是PB上一點,且CD⊥平面PAB.
(Ⅰ)求證:AB⊥平面PCB;
(Ⅱ)求異面直線AP與BC所成角的大;
(Ⅲ)求二面角C-PA-B的大小.
精英家教網(wǎng)

精英家教網(wǎng)

精英家教網(wǎng)

精英家教網(wǎng)
解法一:(Ⅰ)∵PC⊥平面ABC,AB?平面ABC,∴PC⊥AB.
∵CD⊥平面PAB,AB?平面PAB,∴CD⊥AB.
又PC∩CD=C,∴AB⊥平面PCB.
(Ⅱ)過點A作AFBC,且AF=BC,連接PF,CF.則∠PAF為異面直線PA與BC所成的角.
由(Ⅰ)可得AB⊥BC,∴CF⊥AF. 由三垂線定理,得PF⊥AF.則AF=CF=
2
,PF=
PC2+CF^
=
6
,
在Rt△PFA中,tan∠PAF=
PF
AF
=
6
2
=
3
,即∠PAF=
π
3

∴異面直線PA與BC所成的角為
π
3

(Ⅲ)取AP的中點E,連接CE、DE.
∵PC=AC=2,∴CE⊥PA,CE=
2

∵CD⊥平面PAB,由三垂線定理的逆定理,得DE⊥PA.
∴∠CED為二面角C-PA-B的平面角.
由(Ⅰ)AB⊥平面PCB,又∵AB=BC,AC=2,∴BC=
2

在Rt△PCB中,PB=
PC2+BC2
=
6
,CD=
PC•BC
PB
=
2
6
=
2
3

在Rt△CDE中,sin∠CED=
CD
CE
=
2
3
2
=
6
3

∴二面角C-PA-B的大小為arcsin
6
3

解法二:(Ⅰ)同解法一.
(Ⅱ)由(Ⅰ)AB⊥平面PCB,∵PC=AC=2,又∵AB=BC,可求得BC=
2

以B為原點,如圖建立坐標系.則A(0,
2
,0)
,B(0,0,0),C(
2
,0,0)
,P(
2
,0,2)
AP
=(
2
,-
2
,2)
,
BC
=(
2
,0,0)

cos<
AP
,
BC
>=
AP
BC
|
AP
|•|
BC
|
=
2
2
2
×
2
=
1
2

∴異面直線AP與BC所成的角為
π
3

(Ⅲ)設(shè)平面PAB的法向量為
m
=(x,y,z).
AB
=(0,-
2
,0)
,
AP
=(
2
,-
2
,2)

AB
m
=0
AP
m
=0
,即
-
2
y=0
2
x-
2
y+2z=0
,令z=-1,得
m
=(
2
,0,-1)

設(shè)平面PAC的法向量為
n
=(x′,y′,z′).
PC
=(0,0,-2)
,
AC
=(
2
,-
2
,0)
,
PC
n
=0
AC
n
=0
,即
-2z=0
2
x-
2
y=0
,令x′=1,得
n
=(1,1,0).
cos<
m
n
>=
m
n
|
m
||
n
|
=
2
3
×
2
=
3
3
,
∴二面角C-PA-B的大小為arccos
3
3
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

如圖,三棱錐P-ABC中,PC⊥平面ABC,PC=AC=2,AB=BC,D是PB上一點,且CD⊥平面PAB
(Ⅰ)求證:AB⊥平面PCB;
(Ⅱ)求二面角C-PA-B的大小的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2006•石景山區(qū)一模)如圖,三棱錐P-ABC中,
PA
AB
=
PA
AC
=
AB
AC
=0
,
PA
2
=
AC
2
=4
AB
2

(Ⅰ)求證:AB⊥平面PAC;
(Ⅱ)若M為線段PC上的點,設(shè)
|
PM|
|PC
|
,問λ為何值時能使直線PC⊥平面MAB;
(Ⅲ)求二面角C-PB-A的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•湖南模擬)如圖,三棱錐P-ABC中,側(cè)面PAC⊥底面ABC,∠APC=90°,且AB=4,AP=PC=2,BC=2
2

(Ⅰ)求證:PA⊥平面PBC;
(Ⅱ)若E為側(cè)棱PB的中點,求直線AE與底面ABC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•德陽二模)如圖,三棱錐P-ABC中,PA丄面ABC,∠ABC=90°,PA=AB=1,BC=2,則P-ABC的外接球的表面積為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖在三棱錐P-ABC中,AB⊥PC,AC=2,BC=4,AB=2
3
,∠PCA=30°.
(1)求證:AB⊥平面PAC. (2)設(shè)二面角A-PC-B•的大小為θ•,求tanθ•的值.

查看答案和解析>>

同步練習冊答案