欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

1.已知平面向量$\overrightarrow{a}$=(1,-1),$\overrightarrow$=(6,-4),若$\overrightarrow{a}$⊥(t$\overrightarrow{a}$+$\overrightarrow$),則實(shí)數(shù)t的值為(  )
A.10B.5C.-10D.-5

分析 利用平面向量坐標(biāo)運(yùn)算法則求出$t\overrightarrow{a}+\overrightarrow$,再由$\overrightarrow{a}$⊥(t$\overrightarrow{a}$+$\overrightarrow$),利用向量垂直的性質(zhì)能求出實(shí)數(shù)t的值.

解答 解:∵平面向量$\overrightarrow{a}$=(1,-1),$\overrightarrow$=(6,-4),
∴t$\overrightarrow{a}$+$\overrightarrow$=(t+6,-t-4),
∵$\overrightarrow{a}$⊥(t$\overrightarrow{a}$+$\overrightarrow$),
∴$\overrightarrow{a}•(t\overrightarrow{a}+\overrightarrow)$=(t+6)-(-t-4)=0,
解得實(shí)數(shù)t=-5.
故選:D.

點(diǎn)評(píng) 本題考查實(shí)數(shù)值的求法,考查平面向量坐標(biāo)運(yùn)算法則、向量垂直的性質(zhì)等知識(shí),考查推理論證能力、運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想、函數(shù)與方程思想,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.將函數(shù)f(x)=2cos(2x-$\frac{π}{6}}$)的圖象向左平移$\frac{π}{4}$個(gè)單位得到g(x)的圖象,記函數(shù)g(x)在區(qū)間$[{t,t+\frac{π}{4}}]$內(nèi)的最大值為Mt,最小值為mt,記ht=Mt-mt,若t∈[${\frac{π}{4}$,$\frac{π}{2}}$],則函數(shù)h(t)的最小值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.在如圖所示的程序框圖中,若U=lg$\frac{1}{3}$•log3$\frac{1}{10}$,V=2${\;}^{lo{g}_{\frac{1}{2}}2}$,則輸出的S=$\frac{1}{2}$,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.直線$\left\{\begin{array}{l}{x=3-\frac{\sqrt{3}}{2}t}\\{y=1+\frac{1}{2}t}\end{array}\right.$(t為參數(shù))的斜率為(  )
A.-$\frac{\sqrt{3}}{3}$B.-$\frac{\sqrt{3}}{2}$C.$\frac{\sqrt{3}}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.為響應(yīng)市政府“綠色出行”的號(hào)召,王老師每個(gè)工作日上下班由自駕車改為選擇乘坐地鐵或騎共享單車這兩種方式中的一種出行.根據(jù)王老師從2017年3月到2017年5月的出行情況統(tǒng)計(jì)可知,王老師每次出行乘坐地鐵的概率是0.4,騎共享單車的概率
是0.6.乘坐地鐵單程所需的費(fèi)用是3元,騎共享單車單程所需的費(fèi)用是1元.記王老師在一個(gè)工作日內(nèi)上下班所花費(fèi)的總交通費(fèi)用為X元,假設(shè)王老師上下班選擇出行方式是相互獨(dú)立的.
(I)求X的分布列和數(shù)學(xué)期望E(X);
(II)已知王老師在2017年6月的所有工作日(按22個(gè)工作日計(jì))中共花費(fèi)交通費(fèi)用110元,請(qǐng)判斷王老師6月份的出行規(guī)律是否發(fā)生明顯變化,并依據(jù)以下原則說明理由.
原則:設(shè)a表示王老師某月每個(gè)工作日出行的平均費(fèi)用,若|a-E(X)≥$\sqrt{\frac{D(X)}{5}}$,則有95%的把握認(rèn)為王老師該月的出行規(guī)律與前幾個(gè)月的出行規(guī)律相比有明顯變化.(注:D(X)=$\sum_{i=1}^{n}$(xi-E(X))2pi

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知復(fù)數(shù)1+2i,a+bi(a、b∈R,i是虛數(shù)單位)滿足(1+2i)(a+bi)=5+5i,則|a+bi|=( 。
A.3$\sqrt{2}$B.$\sqrt{17}$C.$\sqrt{10}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.若a=log30.6,b=30.6,c=0.63,則( 。
A.c>a>bB.a>b>cC.b>c>aD.a>c>b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知⊙C1:(x+1)2+y2=1,⊙C2:(x-1)2+y2=r2(r>0),⊙C1內(nèi)切⊙C2于點(diǎn)A,P是兩圓公切線l上異于A的一點(diǎn),直線PQ切⊙C1于點(diǎn)Q,PR切⊙C2于點(diǎn)R,且Q,R均不與A重合,直線C1Q,C2R相交于點(diǎn)M.
(1)求M的軌跡C的方程;
(2)若直線MC1與x軸不垂直,它與C的另一個(gè)交點(diǎn)為N,M′是點(diǎn)M關(guān)于x軸的對(duì)稱點(diǎn),求證:直線NM′過定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.通過市場(chǎng)調(diào)查,得到某產(chǎn)品的資金投入x(萬元)與獲得的利潤(rùn)y(萬元)的數(shù)據(jù),如表所示:
資金投入x23456
利潤(rùn)y23569
(Ⅰ)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求線性回歸直線方程${\;}_{y}^{∧}$=bx+a;
(Ⅱ)現(xiàn)投入資金10(萬元),求估計(jì)獲得的利潤(rùn)為多少萬元.
參考公式:回歸直線的方程是:${\;}_{y}^{∧}$=${\;}_^{∧}$x+${\;}_{a}^{∧}$,其中b=$\frac{{{\sum_{i=1}^{n}x}_{i}y}_{i}-{{n}_{x}^{-}}_{y}^{-}}{{{\sum_{i=1}^{n}x}_{i}^{2}-{n}_{x}^{-}}^{2}}$,${\;}_{a}^{∧}$=${\;}_{y}^{-}$-${\;}_^{∧}$${\;}_{x}^{-}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案