【題目】如圖,居民小區(qū)要建一座八邊形的休閑場所,它的主體造型平面圖是由兩個(gè)相同的矩形
和
構(gòu)成的面積為
的十字形地域,計(jì)劃在正方形
上建一座花壇,造價(jià)為
元/
;在四個(gè)相同的矩形(圖中陰影部分)上鋪上花崗巖地坪,造價(jià)為
元/
;再在四個(gè)空角(圖中四個(gè)三角形,如
)上鋪草坪,造價(jià)為
元/![]()
(1)設(shè)總造價(jià)為
(單位:元),
長為
(單位:
),試求出
關(guān)于
的函數(shù)關(guān)系式,并求出定義域;
(2)當(dāng)
長
取何值時(shí),總造價(jià)
最小,并求出這個(gè)最小值.
![]()
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)
,及圓
.
(1)求過
點(diǎn)的圓的切線方程;
(2)若過
點(diǎn)的直線與圓相交,截得的弦長為
,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線C:y2=2px(p>0)的焦點(diǎn)F,直線y=4與y軸的交點(diǎn)為P,與拋物線C的交點(diǎn)為Q,且|QF|=2|PQ|.
(1)求p的值;
(2)已知點(diǎn)T(t,-2)為C上一點(diǎn),M,N是C上異于點(diǎn)T的兩點(diǎn),且滿足直線TM和直線TN的斜率之和為
,證明直線MN恒過定點(diǎn),并求出定點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
過點(diǎn)
,其長軸、焦距和短軸的長的平方依次成等差數(shù)列
直線l與x軸正半軸和y軸分別交于點(diǎn)Q、P,與橢圓分別交于點(diǎn)M、N,各點(diǎn)均不重合且滿足
.
求橢圓的標(biāo)準(zhǔn)方程;
若
,試證明:直線l過定點(diǎn)并求此定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系
中,以
為極點(diǎn),
軸為正半軸為極軸建立極坐標(biāo)系.已知曲線
的極坐標(biāo)方程為
,直線
與曲線
相交于
兩點(diǎn),直線
過定點(diǎn)
且傾斜角為
交曲線
于
兩點(diǎn).
(1)把曲線
化成直角坐標(biāo)方程,并求
的值;
(2)若
成等比數(shù)列,求直線
的傾斜角
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C1:
y2=1的左右頂點(diǎn)是雙曲線C2:
的頂點(diǎn),且橢圓C1的上頂點(diǎn)到雙曲線C2的漸近線的距離為
.
(1)求雙曲線C2的方程;
(2)若直線與C1相交于M1,M2兩點(diǎn),與C2相交于Q1,Q2兩點(diǎn),且![]()
5,求|M1M2|的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四面體ABCD中,DA=DB=DC=
且DA、DB、DC兩兩互相垂直,點(diǎn)
是△ABC的中心.
![]()
(1)求直線DA與平面ABC所成角的大小(用反三角函數(shù)表示);
(2)過
作OE⊥AD,垂足為E,求ΔDEO繞直線DO旋轉(zhuǎn)一周所形成的幾何體的體積;
(3)將△DAO繞直線DO旋轉(zhuǎn)一周,則在旋轉(zhuǎn)過程中,直線DA與直線BC所成角記為
,求
的取值范圖.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com