欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

精英家教網 > 高中數學 > 題目詳情
設定義域為R的函數f(x)滿足下列條件:①對任意x∈R,f(x)+f(-x)=0;②對任意x1,x2∈[1,a],當x2>x1時,有f(x2)>f(x1)>0.則下列不等式不一定成立的是( 。
A、f(a)>f(0)
B、f(
1+a
2
)>f(
a
)
C、f(
1-3a
1+a
)>f(-3)
D、f(
1-3a
1+a
)>f(-a)
分析:根據題中的2個條件可以判斷函數f(x)是奇函數,且在[1,a]上是個增函數,所以,要比較2個函數值的大小,
要看自變量的范圍,再利用函數的單調性得出結論.
解答:解:∵①對任意x∈R,f(x)+f(-x)=0,∴函數f(x)是奇函數,
∵②對任意x1,x2∈[1,a],當x2>x1時,有f(x2)>f(x1)>0,
∴函數f(x)在區(qū)間[1,a]上是單調增函數.
∵a>1,故選項A、f(a)>f(0)一定成立.
1+a
2
a
,故選項B、f(
1+a
2
)>f(a)一定成立.
1-3a
1+a
-(-a)=
(a-1)2
1+a
>0,∴
1-3a
1+a
>-a,∴a>
3a-1
1+a
=3-
4
a+1
≥1,
∴f(a)>f(
3a-1
1+a
),兩邊同時乘以-1可得-f(a)<-f(
3a-1
1+a
),即f(
1-3a
1+a
)>f(-a),
故選項D一定成立.
1-3a
1+a
-(-3)=
4
1+a
>0,∴
1-3a
1+a
>-3,∴3>
3a-1
1+a
>0,但不能確定3和
3a-1
1+a
 是否在區(qū)間[1,a]上,
故f(3)和f(
3a-1
1+a
)的大小關系不確定,故f(
1-3a
1+a
) 與f(-3)的大小關系不確定,故C不一定正確.
故答案選  C.
點評:本題考查抽象函數及其應用,從條件判斷函數的奇偶性和單調性,依據單調性分析各選項是否一定成立,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

設定義域為R的函數f(x)=
5|x-1|-1,x≥0
x2+4x+4,x<0
若關于x的方程f2(x)-(2m+1)f(x)+m2=0有7個不同的實數根,則實數m=
 

查看答案和解析>>

科目:高中數學 來源: 題型:

設定義域為R的函數f(x)=
5|x-1|-1,x≥0
x2+4x+4,x<0
若關于x的方程f2(x)-(2m+1)f(x)+m2=0有5個不同的實數解,則m=( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

設定義域為R的函數f(x)=
-2x+a2x+1+b
(a,b為實數)若f(x)是奇函數.
(1)求a與b的值;
(2)判斷函數f(x)的單調性,并證明;
(3)證明對任何實數x、c都有f(x)<c2-3c+3成立.

查看答案和解析>>

科目:高中數學 來源: 題型:

設定義域為R的函數f(x)=
|lg|x-1||,x≠1
0,          x=1
,則關于x的方程f2(x)+bf(x)+c=0有7個不同實數解的充要條件是 ( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

設定義域為R的函數f(x)=
4
|x-1
(x≠1)
2
 (x=1)
,若關于x的方程f2(x)+bf(x)+c=0有三個不同的實數解x1、x2、x3,則x12+x22|x32等于( 。

查看答案和解析>>

同步練習冊答案