欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

9.已知f(x)=sin(ωx+$\frac{π}{4}$)(ω>0),若f($\frac{π}{2}$)=f(π),且在區(qū)間($\frac{π}{2}$,π)內(nèi),f(x)≤f($\frac{π}{2}$),則ω=( 。
A.$\frac{1}{3}$B.$\frac{5}{3}$C.$\frac{1+8k}{3}$,k∈ND.$\frac{5+8k}{3}$,k∈N

分析 利用已知條件求出函數(shù)的周期,然后求出ω的值.

解答 解:對(duì)于函數(shù)f(x)=sin(ωx+$\frac{π}{4}$)(ω>0),若f($\frac{π}{2}$)=f(π),
則函數(shù)f(x)的圖象關(guān)于直線x=$\frac{\frac{π}{2}+π}{2}$=$\frac{3π}{4}$對(duì)稱,故ω•$\frac{3π}{4}$+$\frac{π}{4}$=kπ+$\frac{π}{2}$,k∈Z,
故ω=$\frac{4k+1}{3}$,k∈Z.
又在區(qū)間($\frac{π}{2}$,π)內(nèi),f(x)≤f($\frac{π}{2}$),
故在區(qū)間($\frac{π}{2}$,π)內(nèi),當(dāng)x=$\frac{π}{2}$時(shí),f(x)取得最大值,且$\frac{3π}{4}$•ω+$\frac{π}{4}$=$\frac{3π}{2}$,∴ω=$\frac{5}{3}$,
故選:B.

點(diǎn)評(píng) 本題考查三角函數(shù)的圖象以及性質(zhì)的應(yīng)用,考查分析問題解決問題的能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.某公司生產(chǎn)一款家用小型空氣凈化裝置的固定成本為20000元,每生產(chǎn)一臺(tái)裝置需要增加投入200元,經(jīng)市場(chǎng)調(diào)研,銷售該裝置的總收益(單位:元)滿足函數(shù)R(x)=$\left\{\begin{array}{l}{500x-\frac{1}{2}{x}^{2},0≤x≤400}\\{84500+100x,x>400}\end{array}\right.$,其中x是該空氣凈化裝置的月產(chǎn)量(單位:臺(tái)).
(1)將公司月利潤f(x)表示月產(chǎn)量x的函數(shù)關(guān)系;
(2)當(dāng)月產(chǎn)量x為何值時(shí),公司所獲月利潤最大?并求出月利潤的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.下列等式中成立的個(gè)數(shù)是( 。伲$\root{n}{a}$)n=a(n∈N*且n>1);②$\root{n}{a}$n=a(n為大于1的奇數(shù));③$\root{n}{{a}^{n}}$=|a|=$\left\{\begin{array}{l}{a,(a≥0)}\\{-a,(a<0)}\end{array}\right.$(n為不等于零的偶數(shù)).
A.0個(gè)B.1個(gè)C.2個(gè)D.3個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知數(shù)列{an}的各項(xiàng)都是正數(shù),其前n項(xiàng)和Sn=$\frac{{{a}_{n}}^{2}+{a}_{n}}{2}$(n∈N*),數(shù)列{bn}滿足bn=$\frac{121}{n+1}$(n∈N*),則當(dāng)an+bn取最小值時(shí)n=10.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.求適合下列條件的直線方程:
(1)經(jīng)過點(diǎn)P(3,2),且在兩坐標(biāo)軸上的截距相等;
(2)直線過點(diǎn)(-3,4),且在兩坐標(biāo)軸上的截距之和為12;
(3)直線過點(diǎn)(5,10),且到原點(diǎn)的距離為5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.設(shè)F2(c,0)(c>0)是雙曲線Г:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的右焦點(diǎn),M是雙曲線坐支上的點(diǎn),線段MF2與圓x2+y2-$\frac{2c}{3}$x+$\frac{{a}^{2}}{9}$=0相切與點(diǎn)D,且$\overrightarrow{M{F}_{2}}$+3$\overrightarrow{{F}_{2}D}$=$\overrightarrow{0}$,則雙曲線Г的漸近線方程為(  )
A.y=$±\sqrt{2}$xB.y=±2xC.y=$±\frac{3}{2}$xD.y=±4x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.甲、乙兩個(gè)生物小組分別獨(dú)立開展對(duì)某生物離開恒溫箱的成活情況進(jìn)行研究,每次試驗(yàn)一個(gè)生物,甲組能使生物成活的概率為$\frac{1}{3}$,乙組能使生物成活的概率為$\frac{1}{2}$,假定試驗(yàn)后生物成活,則稱該試驗(yàn)成功,如果生物不成話.則稱該次試驗(yàn)是失敗的.
(1)如果乙小組成功了4次才停止試驗(yàn),求乙小組第四次成功前共有三次失敗,且恰有兩次連續(xù)失敗的概率;
(2)若甲、乙兩小組各進(jìn)行2次試驗(yàn),求甲小組實(shí)驗(yàn)成功的次數(shù)多于乙小組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知(a-3)${\;}^{-\frac{1}{5}}$<(1+2a)${\;}^{-\frac{1}{5}}$,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.設(shè)m,n是兩條不同的直線,α,β,γ是三個(gè)不同的平面,則以下四個(gè)命題:
①$\left.\begin{array}{l}{α∥β}\\{α∥β}\end{array}\right\}$⇒β∥γ;②$\left.\begin{array}{l}{α⊥β}\\{α∥β}\end{array}\right\}$⇒m⊥β③$\left.\begin{array}{l}{m⊥α}\\{m∥β}\end{array}\right\}$⇒α⊥β④$\left.\begin{array}{l}{m∥n}\\{n⊆α}\end{array}\right\}$⇒m∥α.
其中正確的命題為( 。
A.①④B.②③C.①③D.②④

查看答案和解析>>

同步練習(xí)冊(cè)答案