【題目】已知等差數(shù)列{an}的前n項(xiàng)和為Sn , S3=﹣15,且a1+1,a2+1,a4+1成等比數(shù)列,公比不為1.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=
,求數(shù)列{bn}的前n項(xiàng)和Tn .
【答案】
(1)解:設(shè)等差數(shù)列{an}的公差為d,
∵a1+1,a2+1,a4+1成等比數(shù)列,∴
=(a1+1)(a4+1),
又S3=﹣15,∴
=﹣15,∴a2=﹣5.
∴(﹣5+1)2=(﹣5﹣d+1)(﹣5+2d+1),解得d=0或d=﹣2.
d=0時(shí),公比為1,舍去.
∴d=﹣2.
∴an=a2﹣2(n﹣2)=﹣5﹣2(n﹣2)=﹣2n﹣1
(2)解:由(1)可得:Sn=
=﹣n2﹣2n.
∴bn=
=﹣
=﹣
,
∴數(shù)列{bn}的前n項(xiàng)和Tn=
+
+
+…+
+ ![]()
=﹣ ![]()
=﹣
+ ![]()
【解析】(1)設(shè)等差數(shù)列{an}的公差為d,根據(jù)a1+1,a2+1,a4+1成等比數(shù)列,可得
=(a1+1)(a4+1),又S3=﹣15,可得
=3a2=﹣15,解得a2 , 進(jìn)而得到d.即可得出an . (2)由(1)可得:Sn=﹣n2﹣2n.可得bn=
=﹣
=﹣
,利用“裂項(xiàng)求和”即可得出.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四棱錐P﹣ABCD,側(cè)面PAD是正三角形,底面ABCD是菱形,∠BAD=60°,設(shè)平面PAD∩平面PBC=l. ![]()
(Ⅰ)求證:l∥平面ABCD;
(Ⅱ)求證:PB⊥BC.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)是定義在R上的偶函數(shù),當(dāng)x≥0時(shí),f(x)=|x﹣1|,若方程f(x)=
有4個(gè)不相等的實(shí)根,則實(shí)數(shù)a的取值范圍是( )
A.(﹣
,1)
B.(
,1)
C.(
,1)
D.(﹣1,
)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知方程(m2﹣2m﹣3)x+(2m2+m﹣1)y+6﹣2m=0(m∈R).
(1)求該方程表示一條直線的條件;
(2)當(dāng)m為何實(shí)數(shù)時(shí),方程表示的直線斜率不存在?求出這時(shí)的直線方程;
(3)已知方程表示的直線l在x軸上的截距為﹣3,求實(shí)數(shù)m的值;
(4)若方程表示的直線l的傾斜角是45°,求實(shí)數(shù)m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線E的中心為原點(diǎn),P(3,0)是E的焦點(diǎn),過P的直線l與E相交于A,B兩點(diǎn),且AB的中點(diǎn)為N(﹣12,﹣15),則E的方程式為( )
A.![]()
B.![]()
C.![]()
D.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,三棱柱ABC﹣A1B1C1中,側(cè)面BB1C1C為菱形,AB⊥B1C. (Ⅰ)證明:AC=AB1;
(Ⅱ)若AC⊥AB1 , ∠CBB1=60°,AB=BC,求二面角A﹣A1B1﹣C1的余弦值.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】據(jù)環(huán)保部通報(bào),2016年10月24日起,京津冀周邊霧霾又起,為此,環(huán)保部及時(shí)提出防控建議,推動(dòng)應(yīng)對(duì)工作由過去“大水漫灌式”的減排方式轉(zhuǎn)變?yōu)閷?shí)現(xiàn)精確打擊.某燃煤企業(yè)為提高應(yīng)急聯(lián)動(dòng)的同步性,新購置并安裝了先進(jìn)的廢氣處理設(shè)備,使產(chǎn)生的廢氣經(jīng)過過濾后排放,以降低對(duì)大氣環(huán)境的污染,已知過濾后廢氣的污染物數(shù)量N(單位:mg/L)與過濾時(shí)間t(單位:小時(shí))間的關(guān)系為N(t)=N0e﹣λt(N0 , λ均為非零常數(shù),e為自然對(duì)數(shù)的底數(shù))其中N0為t=0時(shí)的污染物數(shù)量,若經(jīng)過5小時(shí)過濾后污染物數(shù)量為
N0 .
(1)求常數(shù)λ的值;
(2)試計(jì)算污染物減少到最初的10%至少需要多少時(shí)間?(精確到1小時(shí)) 參考數(shù)據(jù):ln3≈1.10,ln5≈1.61,ln10≈2.30.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=Asin(ωx+φ),(x∈R,A>0,ω>0,|φ|<
)的部分圖象如圖所示: ![]()
(1)試確定f(x)的解析式;
(2)若f(
)=
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義:f1(x)=f(x),當(dāng)n≥2且x∈N*時(shí),fn(x)=f(fn﹣1(x)),對(duì)于函數(shù)f(x)定義域內(nèi)的x0 , 若正在正整數(shù)n是使得fn(x0)=x0成立的最小正整數(shù),則稱n是點(diǎn)x0的最小正周期,x0稱為f(x)的n~周期點(diǎn),已知定義在[0,1]上的函數(shù)f(x)的圖象如圖,對(duì)于函數(shù)f(x),下列說法正確的是(寫出所有正確命題的編號(hào))![]()
①1是f(x)的一個(gè)3~周期點(diǎn);
②3是點(diǎn)
的最小正周期;
③對(duì)于任意正整數(shù)n,都有fn(
)=
;
④若x0∈(
,1],則x0是f(x)的一個(gè)2~周期點(diǎn).
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com