| A. | 60° | B. | 45° | C. | 30° | D. | 90° |
分析 取AC中點O,連結(jié)EO、FO,∠EOF為異面直線AB與PC所成的角或所成角的補角,由此能求出異面直線AB與PC所成的角的大。
解答
解:如圖,取AC中點O,連結(jié)EO、FO,
∵E、F分別是三棱錐P-ABC的棱AP、BC的中點,AB=6,PC=8,EF=5,
∴EO∥PC,且EO=$\frac{1}{2}PC$=4,
FO∥AB,且FO=$\frac{1}{2}AB$=3,
∴∠EOF為異面直線AB與PC所成的角或所成角的補角,
∵EO2+FO2=EF2,
∴∠EOF=90°.
∴異面直線AB與PC所成的角為90°.
故選:D.
點評 本題考查異面直線所成角的大小的求法,是基礎(chǔ)題,解題時要認真審題,注意空間思維能力的培養(yǎng).
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | y2=4x | B. | x2=-4y | C. | x2+4y2=1 | D. | x2-4y2=1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | ${\overline{x}}_{1}$>${\overline{x}}_{2}$,s${\;}_{1}^{2}$<${s}_{2}^{2}$ | B. | ${\overline{x}}_{1}$=${\overline{x}}_{2}$,s${\;}_{1}^{2}$>${s}_{2}^{2}$ | ||
| C. | ${\overline{x}}_{1}$=${\overline{x}}_{2}$,s${\;}_{1}^{2}$=${s}_{2}^{2}$ | D. | ${\overline{x}}_{1}$=${\overline{x}}_{2}$,s${\;}_{1}^{2}$<${s}_{2}^{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 30° | B. | 45° | C. | 60° | D. | 90° |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com