【題目】在平面直角坐標系
中,直線
的參數(shù)方程為
(
為參數(shù)). 以
為極點,
軸正半軸為極軸建立極坐標系,曲線
的極坐標方程為
,若直線
與曲線
交于
兩點.
(1)若
,求
;
(2)若點
是曲線
上不同于
的動點,求
面積的最大值.
【答案】(1)
(2)![]()
【解析】
(1)由
代入,得曲線
的直角坐標方程為
. 將直線
的參數(shù)方程化為
(
為參數(shù)),代入
,
得
,設(shè)方程的解為
,
,可得所求的值.
(2)將直線
的參數(shù)方程化為普通方程得
,再設(shè)
,由點到直線的距離公式,由點到直線的距離公式得
到直線
的距離為
,由三角函數(shù)的輔助角公式可得最值.
(1)
可化為
,將
,代入,得曲線
的直角坐標方程為
.
將直線
的參數(shù)方程化為
(
為參數(shù)),代入
,
得
,設(shè)方程的解為
,
,則
,
,
因而
.
(2)將直線
的參數(shù)方程化為普通方程得
,
設(shè)
,由點到直線的距離公式,
得
到直線
的距離為
,
最大值為
,由(1)知
,
因而
面積的最大值為
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2020年是我國全面建成小康社會和“十三五”規(guī)劃收官之年,也是佛山在經(jīng)濟總量超萬億元新起點上開啟發(fā)展新征程的重要歷史節(jié)點.作為制造業(yè)城市,佛山一直堅持把創(chuàng)新擺在制造業(yè)發(fā)展全局的前置位置和核心位置,聚焦打造成為面向全球的國家制造業(yè)創(chuàng)新中心,走“世界科技+佛山智造+全球市場”的創(chuàng)新發(fā)展之路.在推動制造業(yè)高質(zhì)量發(fā)展的大環(huán)境下,佛山市某工廠統(tǒng)籌各類資源,進行了積極的改革探索.下表是該工廠每月生產(chǎn)的一種核心產(chǎn)品的產(chǎn)量x(
)(件)與相應(yīng)的生產(chǎn)總成本y(萬元)的四組對照數(shù)據(jù).
x | 5 | 7 | 9 | 11 |
y | 200 | 298 | 431 | 609 |
工廠研究人員建立了y與x的兩種回歸模型,利用計算機算得近似結(jié)果如下:
模型①:
模型②:
.
其中模型①的殘差(實際值-預(yù)報值)圖如圖所示:
![]()
(1)根據(jù)殘差分析,判斷哪一個模型更適宜作為y關(guān)于x的回歸方程?并說明理由;
(2)市場前景風云變幻,研究人員統(tǒng)計歷年的銷售數(shù)據(jù)得到每件產(chǎn)品的銷售價格q(萬元)是一個與產(chǎn)量x相關(guān)的隨機變量,分布列為:
q |
|
|
|
P | 0.5 | 0.4 | 0.1 |
結(jié)合你對(1)的判斷,當產(chǎn)量x為何值時,月利潤的預(yù)報期望值最大?最大值是多少(精確到0.1)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(1)討論
的單調(diào)性;
(2)用
表示
中的最大值,若函數(shù)
只有一個零點,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱柱
中,
平面ABCD,底面ABCD是矩形,
,
,
,M為
的中點.
![]()
(1)求證:D1M//平面BDC1;
(2)若棱
上存在點Q,滿足
與平面
所成角的正弦值為
,求異面直線
與BQ所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】直角坐標系
中,以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,已知曲線C的極坐標方程為:
,傾斜角為銳角的直線l過點
與單位圓
相切.
(1)求曲線C的直角坐標方程和直線l的參數(shù)方程;
(2)設(shè)直線l與曲線C交于A,B兩點,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在正三棱錐P﹣ABC中,PA,PB,PC兩兩垂直,
,點E在線段AB上,且AE=2EB,過點E作該正三棱錐外接球的截面,則所得截面圓面積的最小值是( )
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系
中,將曲線
:
上的點按坐標變換
,得到曲線
,
為
與
軸負半軸的交點,經(jīng)過點
且傾斜角為
的直線
與曲線
的另一個交點為
,與曲線
的交點分別為
,
(點
在第二象限).
(Ⅰ)寫出曲線
的普通方程及直線
的參數(shù)方程;
(Ⅱ)求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某種昆蟲的日產(chǎn)卵數(shù)和時間變化有關(guān),現(xiàn)收集了該昆蟲第1天到第5天的日產(chǎn)卵數(shù)據(jù):
第x天 | 1 | 2 | 3 | 4 | 5 |
日產(chǎn)卵數(shù)y(個) | 6 | 12 | 25 | 49 | 95 |
對數(shù)據(jù)初步處理后得到了如圖所示的散點圖和表中的統(tǒng)計量的值.
![]()
|
|
|
|
15 | 55 | 15.94 | 54.75 |
(1)根據(jù)散點圖,利用計算機模擬出該種昆蟲日產(chǎn)卵數(shù)y關(guān)于x的回歸方程為
(其中e為自然對數(shù)的底數(shù)),求實數(shù)a,b的值(精確到0.1);
(2)根據(jù)某項指標測定,若日產(chǎn)卵數(shù)在區(qū)間(e6,e8)上的時段為優(yōu)質(zhì)產(chǎn)卵期,利用(1)的結(jié)論,估計在第6天到第10天中任取兩天,其中恰有1天為優(yōu)質(zhì)產(chǎn)卵期的概率.
附:對于一組數(shù)據(jù)(v1,μ1),(v2,μ2),…,(vn,μn),其回歸直線的斜率和截距的最小二乘估計分別為
,
.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com