欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

13.已知△ABC的三個內(nèi)角∠A,∠B,∠C所對的邊分別為a,b,c,asinAsinB+bcos2A=2a.
(1)求$\frac{a}$;
(2)若c=$\sqrt{3}$a,求∠C.

分析 (1)利用正弦定理化簡已知的等式,整理后利用同角三角函數(shù)間的基本關(guān)系化簡,得到sinB=2sinA,再利用正弦定理化簡,即可得到所求式子的值;
(2)由余弦定理可求cosC=$\frac{1}{2}$,結(jié)合C的范圍即可得解.

解答 解:(1)由正弦定理化簡已知的等式得:sin2AsinB+sinBcos2A=2sinA,
即sinB(sin2A+cos2A)=2sinA,
∴sinB=2sinA,
再由正弦定理得:b=2a,
則$\frac{a}$=2;
(2)∵由(1)可得b=2a,c=$\sqrt{3}$a,
∴由余弦定理可得:cosC=$\frac{{a}^{2}+^{2}-{c}^{2}}{2ab}$=$\frac{{a}^{2}+4{a}^{2}-3{a}^{2}}{2×a×2a}$=$\frac{1}{2}$,
∴由C為三角形內(nèi)角,可得∠C=$\frac{π}{3}$.

點評 此題考查了正弦、余弦定理,同角三角函數(shù)間的基本關(guān)系,以及余弦函數(shù)的單調(diào)性,熟練掌握定理是解本題的關(guān)鍵,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.設(shè)a1=2,an+1=$\frac{2}{{a}_{n}+1}$,bn=|$\frac{{a}_{n}+2}{{a}_{n}-1}$|-1,則b2014=5•22013-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=lnx+$\frac{1}{2}$x2-(a+2)x,a∈R.
(1)若曲線y=f(x)在點P(1,f(1))處的切線垂直于y軸,求實數(shù)a的值;
(2)若x=m和x=n是f(x)的兩個極值點,其中m<n,求f(m)+f(n)的取值范圍;
(3)在(2)的條件下,若a≥$\sqrt{e}$+$\frac{1}{\sqrt{e}}$-2,求f(n)-f(m)的最大值(e是自然對數(shù)的底數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.設(shè)數(shù)列{an}的前n項和為Sn,已知S1=1,S2=2,當(dāng)n≥2時,Sn+1-Sn-1=2n
(1)求證:an+2-an=2n(n∈N*);
(2)求數(shù)列{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.求與橢圓x2+4y2=64共焦點,且一條漸近線方程是x+$\sqrt{3}$y=0的雙曲線的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.若tanα=-$\frac{1}{2}$,則$\frac{sin2α+2cos2α}{4cos2α-4sin2α}$的值是$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知正項數(shù)列{an}滿足a1=1,an+1=$\frac{5+2{a}_{n}}{16-8{a}_{n}}$,試求{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.同一事物若從不同角度看可能個會有不同的認(rèn)識,在研究“超越方程”3x=2cos2$\frac{x}{2}$的解的個數(shù)時,有如下解題思路:方程3x=2cos2$\frac{x}{2}$可化為3x-2cos2$\frac{x}{2}$=0,構(gòu)造函數(shù)f(x)=3x-2cos2$\frac{x}{2}$,故f(x)=3x-1-cosx;因為f′(x)=3+sinx>0,可知f(x)在R上單調(diào)遞增,又f(0)•f($\frac{π}{2}$)<0,所以函數(shù)f(x)=3x-2cos2$\frac{x}{2}$有唯一零點,即“超越方程”3x-2cos2$\frac{x}{2}$=0有唯一解:由此可見利用函數(shù)觀點解決問題的優(yōu)越性,類比上述解題思路,不等式x2+2x-3>sin(x2+x)+sin(x-3)的解集為R.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.在數(shù)列{an}中,an+1>an,a1=1且(an+1-an2-2(an+an+1)+1=0,猜想{an}的通項公式,并證明你的猜想.

查看答案和解析>>

同步練習(xí)冊答案