欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

  • <sup id="9o4di"><dl id="9o4di"><em id="9o4di"></em></dl></sup>
    已知函數(shù)f(x)=xlnx.
    (Ⅰ)求f(x)的最小值;
    (Ⅱ)若對所有x≥1都有f(x)≥ax-1,求實數(shù)a的取值范圍.
    【答案】分析:(1)先求出函數(shù)的定義域,然后求導數(shù),根據(jù)導函數(shù)的正負判斷函數(shù)的單調(diào)性進而可求出最小值.
    (2)將f(x)≥ax-1在[1,+∞)上恒成立轉(zhuǎn)化為不等式對于x∈[1,+∞)恒成立,然后令,對函數(shù)g(x)進行求導,根據(jù)導函數(shù)的正負可判斷其單調(diào)性進而求出最小值,使得a小于等于這個最小值即可.
    解答:解:(Ⅰ)f(x)的定義域為(0,+∞),f(x)的導數(shù)f'(x)=1+lnx.
    令f'(x)>0,解得;令f'(x)<0,解得
    從而f(x)在單調(diào)遞減,在單調(diào)遞增.
    所以,當時,f(x)取得最小值
    (Ⅱ)依題意,得f(x)≥ax-1在[1,+∞)上恒成立,
    即不等式對于x∈[1,+∞)恒成立.
    ,

    當x>1時,
    因為,
    故g(x)是(1,+∞)上的增函數(shù),
    所以g(x)的最小值是g(1)=1,
    從而a的取值范圍是(-∞,1].
    點評:本題主要考查函數(shù)的單調(diào)性與其導函數(shù)的正負之間的關系、根據(jù)導數(shù)求函數(shù)的最值.導數(shù)是高等數(shù)學下放到高中的內(nèi)容,是每年必考的熱點問題,要給予重視.
    練習冊系列答案
    相關習題

    科目:高中數(shù)學 來源: 題型:

    精英家教網(wǎng)已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
    π
    2
    )的部分圖象如圖所示,則f(x)的解析式是( 。
    A、f(x)=2sin(πx+
    π
    6
    )(x∈R)
    B、f(x)=2sin(2πx+
    π
    6
    )(x∈R)
    C、f(x)=2sin(πx+
    π
    3
    )(x∈R)
    D、f(x)=2sin(2πx+
    π
    3
    )(x∈R)

    查看答案和解析>>

    科目:高中數(shù)學 來源: 題型:

    (2012•深圳一模)已知函數(shù)f(x)=
    1
    3
    x3+bx2+cx+d
    ,設曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導函數(shù),且滿足f′(2-x)=f′(x).
    (1)求f(x);
    (2)設g(x)=x
    f′(x)
     , m>0
    ,求函數(shù)g(x)在[0,m]上的最大值;
    (3)設h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數(shù)t的取值范圍.

    查看答案和解析>>

    科目:高中數(shù)學 來源: 題型:

    (2011•上海模擬)已知函數(shù)f(x)=(
    x
    a
    -1)2+(
    b
    x
    -1)2,x∈(0,+∞)
    ,其中0<a<b.
    (1)當a=1,b=2時,求f(x)的最小值;
    (2)若f(a)≥2m-1對任意0<a<b恒成立,求實數(shù)m的取值范圍;
    (3)設k、c>0,當a=k2,b=(k+c)2時,記f(x)=f1(x);當a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
    求證:f1(x)+f2(x)>
    4c2
    k(k+c)

    查看答案和解析>>

    科目:高中數(shù)學 來源:上海模擬 題型:解答題

    已知函數(shù)f(x)=(
    x
    a
    -1)2+(
    b
    x
    -1)2,x∈(0,+∞)
    ,其中0<a<b.
    (1)當a=1,b=2時,求f(x)的最小值;
    (2)若f(a)≥2m-1對任意0<a<b恒成立,求實數(shù)m的取值范圍;
    (3)設k、c>0,當a=k2,b=(k+c)2時,記f(x)=f1(x);當a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
    求證:f1(x)+f2(x)>
    4c2
    k(k+c)

    查看答案和解析>>

    科目:高中數(shù)學 來源:深圳一模 題型:解答題

    已知函數(shù)f(x)=
    1
    3
    x3+bx2+cx+d
    ,設曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導函數(shù),且滿足f′(2-x)=f′(x).
    (1)求f(x);
    (2)設g(x)=x
    f′(x)
     , m>0
    ,求函數(shù)g(x)在[0,m]上的最大值;
    (3)設h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數(shù)t的取值范圍.

    查看答案和解析>>

    同步練習冊答案