已知點B(0,1),點C(0,—3),直線PB、PC都是圓
的切線(P點不在y軸上).
(I)求過點P且焦點在x軸上拋物線的標(biāo)準(zhǔn)方程;
(II)過點(1,0)作直線
與(I)中的拋物線相交于M、N兩點,問是否存在定點R,使
為常數(shù)?若存在,求出點R的坐標(biāo)與常數(shù);若不存在,請說明理由。
(I)
(II)存在定點R(0,0),相應(yīng)的常數(shù)是
解析試題分析:(I)設(shè)直線PC的方程為:
,
由
所以PC的方程為
由
得P點的坐標(biāo)為(3,1)。
可求得拋物線的標(biāo)準(zhǔn)方程為
(II)設(shè)直線l的方程為
,代入拋物線方程并整理得![]()
![]()
11分
當(dāng)
時上式是一個與m無關(guān)的常數(shù)
所以存在定點R(0,0),相應(yīng)的常數(shù)是
考點:直線與圓錐曲線的綜合問題;平面向量數(shù)量積的運算;拋物線的標(biāo)準(zhǔn)方程.
點評:本題主要考查了直線與圓錐曲線的綜合問題.研究直線與圓錐曲線位置關(guān)系的問題,通常有兩種方法:一是轉(zhuǎn)化為研究方程組的解的問題,利用直線方程與圓錐曲線方程所組成的方程組消去一個變量后,將交點問題(包括公共點個數(shù)、與交點坐標(biāo)有關(guān)的問題)轉(zhuǎn)化為一元二次方程根的問題,結(jié)合根與系數(shù)的關(guān)系及判別式解決問題;二是運用數(shù)形結(jié)合的思想.
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知
的頂點A在射線
上,
、
兩點關(guān)于x軸對稱,0為坐標(biāo)原點,且線段AB上有一點M滿足
當(dāng)點A在
上移動時,記點M的軌跡為W.
(Ⅰ)求軌跡W的方程;
(Ⅱ)設(shè)
是否存在過
的直線
與W相交于P,Q兩點,使得
若存在,
求出直線
;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,F(xiàn)1,F(xiàn)2是離心率為
的橢圓C:
(a>b>0)的左、右焦點,直線:x=-
將線段F1F2分成兩段,其長度之比為1 : 3.設(shè)A,B是C上的兩個動點,線段AB的中垂線與C交于P,Q兩點,線段AB的中點M在直線l上.![]()
(Ⅰ) 求橢圓C的方程;
(Ⅱ) 求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知中心在原點的雙曲線C的右焦點為(2,0),右頂點為![]()
(1)求雙曲線C的方程;
(2)若直線
與雙曲線C恒有兩個不同的交點A和B,且
(其中O為原點). 求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,橢圓
的左頂點為
,
是橢圓
上異于點
的任意一點,點
與點
關(guān)于點
對稱.![]()
(1)若點
的坐標(biāo)為
,求
的值;
(2)若橢圓
上存在點
,使得
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)圓
的極坐標(biāo)方程為
,以極點為直角坐標(biāo)系的原點,極軸為
軸正半軸,兩坐標(biāo)系長度單位一致,建立平面直角坐標(biāo)系.過圓
上的一點
作平行于
軸的直線
,設(shè)
與
軸交于點
,向量
.
(Ⅰ)求動點
的軌跡方程;
(Ⅱ)設(shè)點
,求
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知拋物線
的焦點在拋物線
上.![]()
(1)求拋物線
的方程及其準(zhǔn)線方程;
(2)過拋物線
上的動點
作拋物線
的兩條切線
、
, 切點為
、
.若
、
的斜率乘積為
,且
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓
,直線l為圓
的一條切線,且經(jīng)過橢圓C的右焦點,直線l的傾斜角為
,記橢圓C的離心率為e.
(1)求e的值;
(2)試判定原點關(guān)于l的對稱點是否在橢圓上,并說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
橢圓C以拋物線
的焦點為右焦點,且經(jīng)過點A(2,3).
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)若
分別為橢圓的左右焦點,求
的角平分線所在直線的方程.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com