分析 根據(jù)CP∥OB求得∠CPO和和∠OCP進而在△POC中利用正弦定理求得PC和OC,進而利用三角形面積公式表示出S,利用兩角和公式化簡整理后,利用θ的范圍確定三角形面積的最大值.
解答 解:因為CP∥OB,所以∠CPO=∠POB=60°-θ,∴∠OCP=120°.
在△POC中,由正弦定理得CP=$\frac{4sinθ}{sin120°}$=$\frac{8}{\sqrt{3}}$sinθ.OC=$\frac{4sin(60°-θ)}{sin120°}$=$\frac{8}{{\sqrt{3}}}sin({60°}-θ)$
三角形POC的面積S=$\frac{1}{2}$CP•OCsin120°=$\frac{1}{2}$•$\frac{8}{\sqrt{3}}$sinθ•$\frac{8}{{\sqrt{3}}}sin({60°}-θ)$•$\frac{\sqrt{3}}{2}$
=$\frac{8}{{\sqrt{3}}}sin(2θ+{30°})-\frac{{4\sqrt{3}}}{3}$,
所以當θ=30°,三角形POC的面積的最大值$\frac{{4\sqrt{3}}}{3}$.
點評 本題主要考查了三角函數(shù)的模型的應(yīng)用.考查了考生分析問題和解決問題的能力.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | ${(\frac{1}{3})^2}×{(\frac{2}{3})^3}$ | B. | ${(\frac{2}{3})^2}×{(\frac{1}{3})^3}$ | C. | $C_5^2{(\frac{2}{3})^2}×{(\frac{1}{3})^3}$ | D. | $C_5^2{(\frac{1}{3})^2}×{(\frac{2}{3})^3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 1-cos2 | B. | 2-cos1 | C. | cos2-1 | D. | 1+cos2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{1}{8}$ | B. | $\frac{3}{8}$ | C. | $\frac{1}{4}$ | D. | $\frac{3}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com