欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

7.設(shè)O,A,B為平面上三點(diǎn),且點(diǎn)P在直線AB上,若$\overrightarrow{OP}$=m$\overrightarrow{OA}$+n$\overrightarrow{OB}$,則m+n=( 。
A.0B.-1C.1D.不能確定

分析 用$\overrightarrow{OA}$,$\overrightarrow{OB}$表示出$\overrightarrow{AP}$,根據(jù)共線定理列方程組即可得出m+n的值.

解答 解:$\overrightarrow{AP}$=$\overrightarrow{OP}-\overrightarrow{OA}$=(m-1)$\overrightarrow{OA}$+n$\overrightarrow{OB}$,
∵點(diǎn)P在直線AB上,
∴$\overrightarrow{AP}$=λ$\overrightarrow{AB}$=λ$\overrightarrow{OB}$-λ$\overrightarrow{OA}$,
∴$\left\{\begin{array}{l}{m-1=-λ}\\{n=λ}\end{array}\right.$,
兩式相加得m+n-1=0,即m+n=1.
故選C.

點(diǎn)評 本題考查了平面向量的基本定理,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知集合A={x|1<x<4},B={y|y=2-x,x∈A},集合$C=\left\{{x|y=ln\frac{2-x}{x+1}}\right\}$,則集合B∩C=(  )
A.{x|-1<x<1}B.{x|-1≤x≤1}C.{x|-1<x<2}D.{x|-1<x≤2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知λ∈R,函數(shù)f(x)=λex-xlnx(e=2.71828…是自然對數(shù)的底數(shù)).
(Ⅰ)若f(1)=0,證明:曲線y=f(x)沒有經(jīng)過點(diǎn)$M({\frac{2}{3},0})$的切線;
(Ⅱ)若函數(shù)f(x)在其定義域上不單調(diào),求λ的取值范圍;
(Ⅲ)是否存在正整數(shù)n,當(dāng)$λ∈[{\frac{n+1}{{n{e^{n+1}}}},+∞})$時,函數(shù)f(x)的圖象在x軸的上方,若存在,求n的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.過點(diǎn)(1,-3)且垂直于于直線x-2y+3=0的直線方程為(  )
A.x-2y-7=0B.2x+y+1=0C.x-2y+7=0D.2x+y-1=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知向量$\overrightarrow{a}$=(cosωx,sinωx),$\overrightarrow$=(cosωx,$\sqrt{3}$cosωx),其中0<ω<2,函數(shù)f(x)=$\overrightarrow{a}$•$\overrightarrow$-$\frac{1}{2}$,其中圖象的一條對稱軸為x=$\frac{π}{6}$.
(1)求函數(shù)f(x)的表達(dá)式及單調(diào)遞增區(qū)間;
(2)將函數(shù)y=f(x)的圖象向左平移$\frac{2π}{3}$個單位,再將所得圖象上各點(diǎn)的橫坐標(biāo)伸長為原來的4倍,縱坐標(biāo)不變,得到函數(shù)y=g(x)的圖象,求函數(shù)y=g(x)的對稱中心.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知橢圓${C_1}:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的離心率為$\frac{1}{2}$,且直線${l_1}:\frac{x}{a}+\frac{y}=1$被橢圓C1截得的弦長為$\sqrt{7}$.
(I)求橢圓C1的方程;
(II)以橢圓C1的長軸為直徑作圓C2,過直線l2:y=4上的動點(diǎn)M作圓C2的兩條切線,設(shè)切點(diǎn)為A,B,若直線AB與橢圓C1交于不同的兩點(diǎn)C,D,求|CD|•|AB|的取信范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖,四棱錐P-ABCD中,底面ABCD邊長為4的正方形,PA=PD=2$\sqrt{2}$,平面PAD⊥平面ABCD.
(Ⅰ)求證:平面PAD⊥平面PCD;
(Ⅱ)點(diǎn)E為線段PD上一點(diǎn),且三棱錐E-BCD的體積為$\frac{8}{3}$,求平面EBC與平面PAB所成銳二面角的余弦值的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.若復(fù)數(shù)z1=1+5i,z2=-3+7i,則復(fù)數(shù)z=z1-z2在復(fù)平面內(nèi)對應(yīng)的點(diǎn)在( 。
A.第四象限B.第二象限C.第三象限D.第一象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知$\overrightarrow a=({\sqrt{3}sinx,cosx})$,$\overrightarrow b=({cosx,cosx})$,f(x)=2$\overrightarrow a•\overrightarrow b+2m-1({x,m∈R})$
(1)當(dāng)x∈R時,f(x)有最大值6,求m的值;
(2)在(1)的條件下,求f(x)單調(diào)遞減區(qū)間.

查看答案和解析>>

同步練習(xí)冊答案