分析 設(shè)x∈[-2,-1],則x+4∈[2,3],f(x+4)=x+4,利用f(x)是R上周期為2的函數(shù),可得結(jié)論;設(shè)x∈[-1,0],則2-x∈[2,3],f(2-x)=2-x,利用f(x)是R上周期為2的函數(shù),可得結(jié)論.
解答 解:設(shè)x∈[-2,-1],則x+4∈[2,3],f(x+4)=x+4,
∵f(x)是R上周期為2的函數(shù),
∴f(x)=x+4,
設(shè)x∈[-1,0],則2-x∈[2,3],f(2-x)=2-x,
∵f(x)是R上周期為2的偶函數(shù),
∴f(x)=2-x,
∴f(x)=$\left\{\begin{array}{l}{x+4,x∈[-2,-1]}\\{2-x,x∈[-1,0]}\end{array}\right.$.
故答案為:f(x)=$\left\{\begin{array}{l}{x+4,x∈[-2,-1]}\\{2-x,x∈[-1,0]}\end{array}\right.$.
點(diǎn)評 本題考查函數(shù)解析式的確定,考查分段函數(shù),考查學(xué)生分析解決問題的能力,屬于中檔題.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 2xy | B. | 2$\sqrt{xy}$ | C. | x2+y2 | D. | x+y |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com