分析 (1)由題意設(shè)橢圓的標(biāo)準(zhǔn)方程為:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}=1$(a>b>0),可得c=1,$\frac{c}{a}$=$\frac{1}{2}$,又a2=b2+c2,解得即可得出.
(2)由|PF1|-|PF2|=1,|PF1|+|PF2|=4,聯(lián)立解得|PF1|,|PF2|.在△PF1F2中,由余弦定理可得:cos∠F1PF2=$\frac{|P{F}_{1}{|}^{2}+|P{F}_{2}{|}^{2}-|{F}_{1}{F}_{2}{|}^{2}}{2|P{F}_{1}||P{F}_{2}|}$,即可得出.
解答 解:(1)由題意設(shè)橢圓的標(biāo)準(zhǔn)方程為:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}=1$(a>b>0),
∵橢圓的兩焦點(diǎn)是F1(-1,0),F(xiàn)2(1,0),離心率e=$\frac{1}{2}$.
∴c=1,$\frac{c}{a}$=$\frac{1}{2}$,又a2=b2+c2,解得a=2,b2=3.
∴橢圓的標(biāo)準(zhǔn)方程為:$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$.
(2)∵|PF1|-|PF2|=1,|PF1|+|PF2|=4,
聯(lián)立解得|PF1|=$\frac{5}{2}$,|PF2|=$\frac{3}{2}$.
在△PF1F2中,由余弦定理可得:cos∠F1PF2=$\frac{|P{F}_{1}{|}^{2}+|P{F}_{2}{|}^{2}-|{F}_{1}{F}_{2}{|}^{2}}{2|P{F}_{1}||P{F}_{2}|}$=$\frac{(\frac{5}{2})^{2}+(\frac{3}{2})^{2}-{2}^{2}}{2×\frac{5}{2}×\frac{3}{2}}$=$\frac{3}{5}$.
點(diǎn)評(píng) 本題考查了橢圓與雙曲線的標(biāo)準(zhǔn)方程及其性質(zhì)、余弦定理,考查了推理能力與計(jì)算能力,屬于中檔題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | (0,e2] | B. | [e2,+∞) | C. | (2,e2] | D. | [2,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 若α⊥β,β⊥γ,則α⊥γ | B. | 若m∥α,n∥β,α⊥β,則m⊥n | ||
| C. | 若α⊥β,m?β,m⊥α,則m∥β | D. | 若α∥β,m∥α,則m∥β |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{1}{4}$ | B. | 1 | C. | 2 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | ±$\frac{\sqrt{10}}{5}$ | B. | ±$\frac{\sqrt{10}}{10}$ | C. | ±$\frac{1}{3}$ | D. | ±$\frac{1}{5}$ |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com