【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系
中,曲線(xiàn)
的參數(shù)方程為
(
為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),以
軸正半軸為極軸建立極坐標(biāo)系,曲線(xiàn)
的極坐標(biāo)方程為
,曲線(xiàn)
的極坐標(biāo)方程為
.
(1)當(dāng)
時(shí),求曲線(xiàn)
和曲線(xiàn)
的交點(diǎn)
的直角坐標(biāo);
(2)當(dāng)
時(shí),設(shè)
,
分別是曲線(xiàn)
與曲線(xiàn)
上動(dòng)點(diǎn),求
的最小值.
【答案】(1)
(2)![]()
【解析】試題分析:(1)利用三種方程的轉(zhuǎn)化方法,求曲線(xiàn)
的普通方程和曲線(xiàn)
的直角坐標(biāo)方程,即可求出交點(diǎn)
的直角坐標(biāo);(2)求出曲線(xiàn)
的直角坐標(biāo)方程,可得曲線(xiàn)
是圓,求出圓心到直線(xiàn)的距離及圓的半徑,即可求出
的最小值.
試題解析:(1)曲線(xiàn)
的普通方程為
,曲線(xiàn)
的直角坐標(biāo)方程為
.
聯(lián)立
消去
得![]()
∴
或
,
∵
,
∴![]()
∴
,∴
.
(2)曲線(xiàn)
的直角坐標(biāo)方程為
,曲線(xiàn)
的直角坐標(biāo)方程為
,則曲線(xiàn)
的圓心
到直線(xiàn)
的距離
,因?yàn)閳A
的半徑為1,
∴
的最小值為
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,從參加環(huán)保知識(shí)競(jìng)賽的學(xué)生中抽出
名,將其成績(jī)(均為整數(shù))整理后畫(huà)出的頻率分布直方圖如下:觀(guān)察圖形,回答下列問(wèn)題:
![]()
(1)
這一組的頻數(shù)、頻率分別是多少?
(2)估計(jì)這次環(huán)保知識(shí)競(jìng)賽成績(jī)的平均數(shù)、眾數(shù)、中位數(shù)。(不要求寫(xiě)過(guò)程)
(3) 從成績(jī)是80分以上(包括80分)的學(xué)生中選兩人,求他們?cè)谕环謹(jǐn)?shù)段的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某大學(xué)志愿者協(xié)會(huì)有6名男同學(xué),4名女同學(xué),在這10名同學(xué)中,3名同學(xué)來(lái)自數(shù)學(xué)學(xué)院,其余7名同學(xué)來(lái)自物理﹑化學(xué)等其他互不相同的七個(gè)學(xué)院,現(xiàn)從這10名同學(xué)中隨機(jī)選取3名同學(xué),到希望小學(xué)進(jìn)行支教活動(dòng)(每位同學(xué)被選到的可能性相同).
(1)求選出的3名同學(xué)是來(lái)自互不相同學(xué)院的概率;
(2)設(shè)
為選出的3名同學(xué)中女同學(xué)的人數(shù),求隨機(jī)變量
的分布列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解學(xué)生身高情況,某校以10%的比例對(duì)全校700名學(xué)生按性別進(jìn)行抽樣檢查,測(cè)得身高情況的統(tǒng)計(jì)圖如圖所示:
![]()
(1)估計(jì)該校男生的人數(shù);
(2)估計(jì)該校學(xué)生身高在170~185cm的概率;
(3)從樣本中身高在180~190cm的男生中任選2人,求至少有1人身高在185~190cm的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知雙曲線(xiàn)
的焦點(diǎn)是橢圓
的頂點(diǎn),
為橢圓
的左焦點(diǎn)且橢圓
經(jīng)過(guò)點(diǎn)
.
(1)求橢圓
的方程;
(2)過(guò)橢圓
的右頂點(diǎn)
作斜率為
的直線(xiàn)交橢圓
于另一點(diǎn)
,連結(jié)
并延長(zhǎng)
交橢圓
于點(diǎn)
,當(dāng)
的面積取得最大值時(shí),求
的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)
為集合
的子集,且
,若
,則稱(chēng)
為集合
的
元“大同集”.
(1)寫(xiě)出實(shí)數(shù)集
的一個(gè)二元“大同集”;
(2)是否存在正整數(shù)集
的二元“大同集”,請(qǐng)說(shuō)明理由;
(3)求出正整數(shù)集
的所有三元“大同集”.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某企業(yè)準(zhǔn)備推出一種花卉植物用于美化城市環(huán)境,為評(píng)估花卉的生長(zhǎng)水平,現(xiàn)對(duì)該花卉植株的高度(單位:厘米)進(jìn)行抽查,所得數(shù)據(jù)分組為
,據(jù)此制作的頻率分布直方圖如圖所示.
![]()
(1)求出直方圖中的
值;
(2)利用直方圖估算花卉植株高度的中位數(shù);
(3)若樣本容量為32,現(xiàn)準(zhǔn)備從高度在
的植株中繼續(xù)抽取2顆做進(jìn)一步調(diào)查,求抽取植株來(lái)自同一組的概率.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com