分析 (1)將Rt△AOB以直角邊AO為軸旋轉(zhuǎn)一周得到一個(gè)圓錐,點(diǎn)C為圓錐底面圓周上一點(diǎn),且∠BOC=90°,qj 圓錐的側(cè)面積S側(cè)=πrl=2×4×π=8π.
(2)取OB的中點(diǎn)E,連結(jié)DE、CE,說明∠DCE是直線CD與平面BOC所成的角,在Rt△DEC中,求解即可.
解答 解:(1)∵在Rt△AOB中,$∠OAB=\frac{π}{6}$,斜邊AB=4,D是AB中點(diǎn),
將Rt△AOB以直角邊AO為軸旋轉(zhuǎn)一周得到一個(gè)圓錐,點(diǎn)C為圓錐底面圓周上一點(diǎn),且∠BOC=90°,
∴圓錐的側(cè)面積S側(cè)=πrl=2×4×π=8π.![]()
(2)取OB的中點(diǎn)E,連結(jié)DE、CE,
則DE∥AO,∴DE⊥平面BOC,
∴∠DCE是直線CD與平面BOC所成的角,
在Rt△DEC中,CE=$\sqrt{5}$,DE=$\sqrt{3}$,
tan∠DCE=$\frac{\sqrt{3}}{\sqrt{5}}$=$\frac{\sqrt{15}}{5}$,
∴$∠DCE=arctan\frac{\sqrt{15}}{5}$.
∴直線CD與平面BOC所成角的大小為arctan$\frac{\sqrt{15}}{5}$.
點(diǎn)評(píng) 本題考查旋轉(zhuǎn)體的表面積的求法,直線與平面所成角的求法,考查空間想象能力邏輯推理能力以及計(jì)算能力.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | y=cos(2x+$\frac{π}{2}$) | B. | y=|sin(x+$\frac{π}{3}$)| | C. | y=2cos2x-3 | D. | y=-tan2x |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | ±3 | B. | 3 | C. | -3 | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | ±4 | B. | -4 | C. | 4 | D. | ±2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com