欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

5.(1)化簡(jiǎn)sin(x+180°)cos(-x)sin(-x-180°)tan(-x-180°);
(2)證明:tan2x-sin2x=tan2xsin2x.

分析 (1)由條件利用誘導(dǎo)公式化簡(jiǎn)所給的式子,可得結(jié)果.
(2)由條件利用角三角函數(shù)的基本關(guān)系化簡(jiǎn)等式的左邊,得到右邊,從而證得等式.

解答 (1)解:sin(x+180°)cos(-x)sin(-x-180°)tan(-x-180°)=-sinx•cosx•sinx•(-tanx)
=sin3x.
(2)證明:左邊=tan2x-sin2x=tan2x-tan2x•cos2x=tan2x(1-cos2x)=tan2x•sin2x=右邊,
∴tan2x-sin2x=tan2xsin2x成立.

點(diǎn)評(píng) 本題主要考查同角三角函數(shù)的基本關(guān)系、誘導(dǎo)公式的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.設(shè)i為虛數(shù)單位,若復(fù)數(shù)z=(m2+2m-8)+(m-2)i是純虛數(shù),則實(shí)數(shù)m=( 。
A.-4B.-4或2C.-2或4D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.在△ABC中,(a+b+c)(b+c-a)=3bc,則sinA=( 。
A.$\frac{{\sqrt{3}}}{2}$B.$-\frac{{\sqrt{3}}}{2}$C.$±\frac{{\sqrt{3}}}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.設(shè)不等式組$\left\{\begin{array}{l}x>0\\ y>0\\ y≤-nx+3n\end{array}\right.$所表示的平面區(qū)域?yàn)镈n,記Dn內(nèi)的格點(diǎn)(格點(diǎn)即橫坐標(biāo)和縱坐標(biāo)均為整數(shù)的點(diǎn))個(gè)數(shù)為f(n)(n∈N*
(1)求f(1),f(2)的值及f(n)的表達(dá)式;
(2)若數(shù)列{an}滿足a1=1,${a_{n+1}}-{a_n}=f(n),(n∈{N^•})$,求數(shù)列{an}的通項(xiàng)公式;
(3)設(shè)Sn為數(shù)列{bn}的前n項(xiàng)的和,其中${b_n}={2^{f(n)}}$,問是否存在正整數(shù)n,t,使$\frac{{{S_n}-t{b_n}}}{{{S_{n+1}}-t{b_{n+1}}}}<\frac{1}{16}$成立?若存在,求出正整數(shù)n,t;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.若arcsinx>arccosx,則實(shí)數(shù)x的取值范圍是($\frac{\sqrt{2}}{2}$,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.市體育運(yùn)動(dòng)學(xué)校的甲、乙兩名籃球運(yùn)動(dòng)員練習(xí)投籃,每人練習(xí)10次,每次投籃40個(gè).命中個(gè)數(shù)的莖葉圖如下.則投籃命中率較高的運(yùn)動(dòng)員是甲.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.等差數(shù)列{an}前n項(xiàng)和為Sn,且6S5-5S3=5,a2=1,則Sn的最大值為$\frac{10}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.集合N={x||x|≤1,x∈R},M={x|x≤0,x∈R},則M∩N=( 。
A.{x|-1≤x≤0}B.{x|x≤0}C.{x|0≤x≤1}D.{x|x≤1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.cos2$\frac{π}{8}-{sin^2}\frac{π}{8}$的值為(  )
A.-$\frac{{\sqrt{3}}}{2}$B.-$\frac{1}{2}$C.$\frac{1}{2}$D.$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案