欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

14.拋物線$x=\frac{1}{4}{y^2}$的焦點到雙曲線${x^2}-\frac{y^2}{3}=1$的漸近線的距離是$\frac{\sqrt{3}}{2}$.

分析 求出拋物線的焦點坐標,雙曲線的焦點坐標到漸近線的距離,轉化求解即可.

解答 解:雙曲線${x^2}-\frac{y^2}{3}=1$的焦點(2,0)到漸近線$\sqrt{3}$x+y=0距離為:b=$\frac{|2\sqrt{3}|}{\sqrt{(\sqrt{3})^{2}+{1}^{2}}}$=$\sqrt{3}⇒x=\frac{1}{4}{y^2}$的焦點(1,0)到漸近線距離為$\frac{\sqrt{3}}{2}$.
故答案為:$\frac{\sqrt{3}}{2}$.

點評 本題考查拋物線以及雙曲線的簡單性質的應用,考查計算能力.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

4.已知橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),點F,B分別是橢圓的右焦點與上頂點,O為坐標原點,記△OBF的周長與面積分別為C和S.
(Ⅰ)求$\frac{C}{\sqrt{S}}$的最小值;
(Ⅱ)如圖,過點F的直線l交橢圓于P,Q兩點,過點F作l的垂線,交直線x=3b于點R,當$\frac{C}{\sqrt{S}}$取最小值時,求$\frac{|FR|}{|PQ|}$的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.命題p:?x>2,2x-3>0的否定是( 。
A.?x0>2,${2^{x_0}}-3≤0$B.?x≤2,2x-3>0C.?x>2,2x-3≤0D.?x0>2,${2^{x_0}}-3>0$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.實數(shù)x,y滿足$\left\{\begin{array}{l}x-4y+4≤0\\ 2x+y-10≤0\\ 5x-2y+2≥0\end{array}\right.$則$\frac{y}{x}$的最小值為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知P:?x>0,lnx<x,則¬P為(  )
A.?x≤0,lnx0>x0B.?x≤0,lnx0≥x0C.?x>0,lnx0≥x0D.?x>0,lnx0<x0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知f(x)=xlnx-ax(a∈R).
(Ⅰ)若f(x)在[4,+∞)是單調遞增函數(shù),求實數(shù)a的取值范圍;
(Ⅱ)令h(x)=ex-2ax-1-f(x),若函數(shù)h(x)有兩個零點,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.若$\int_1^m{(2x-1)dx}=6$(其中m>1),則多項式${({x^2}+\frac{1}{x^2}-2)^m}$展開式的常數(shù)項為-20.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.已知命題α:如果x<3,那么x<5,命題β:如果x≥3,那么x≥5,則命題α是命題β的( 。
A.否命題B.逆命題C.逆否命題D.否定形式

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.如圖,四棱柱ABCD-A1B1C1D1中,A1A⊥底面ABCD,四邊形ABCD為梯形,AD∥BC,且AD=2BC,Q為BB1的中點,過A1,Q,D三點的平面記為α.
(Ⅰ)證明:平面α與平面A1B1C1D1的交線平行于直線CD;
(Ⅱ)若AA1=3,BC=CD=$\sqrt{3}$,∠BCD=120°,求平面α與底面ABCD所成二面角的大。

查看答案和解析>>

同步練習冊答案