分析 過點C作CE∥AD交AB于點E,再作EF∥CD交AD于點F,在Rt△AEF中,可將各邊用含BC和CD的代數(shù)式表達(dá)出來,根據(jù)∠A=60°列出三角函數(shù)式代入求解.
解答
解:如圖,過點C作CE∥AD交AB于點E,再作EF∥CD交AD于點F,
設(shè)BC=a,CD=b,
在Rt△BCE中,∵AD∥CE,
∴∠CEB=∠A=60°,
可得BE=cot∠CEB×BC=$\frac{\sqrt{3}}{3}$a,CE=$\sqrt{B{E}^{2}+B{C}^{2}}$=$\frac{2\sqrt{3}}{3}$a,
故AE=4-$\frac{\sqrt{3}}{3}$a,
∵四邊形CDFE為矩形,
∴DF=CE=$\frac{2\sqrt{3}}{3}$a,
∴AF=5-$\frac{2\sqrt{3}}{3}$a,
在Rt△AEF中,
∵cos∠A=$\frac{AF}{AE}$=$\frac{1}{2}$,即$\frac{5-\frac{2\sqrt{3}}{3}a}{4-\frac{\sqrt{3}}{3}a}$=$\frac{1}{2}$,
∴a=2$\sqrt{3}$,
∴AC=$\sqrt{16+12}$=2$\sqrt{7}$.
sin∠A=$\frac{4-\frac{\sqrt{3}}{3}a}$=$\frac{\sqrt{3}}{2}$,
∴b=$\sqrt{3}$
∵BC=a=2$\sqrt{3}$,CD=b=$\sqrt{3}$,
∴$\frac{BC}{CD}$=2.
點評 本題通過作輔助線可在直角三角形內(nèi)進(jìn)行求解,綜合應(yīng)用了解直角三角形、直角三角形性質(zhì),考查了邏輯推理能力和運算能力.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $(-∞,\frac{1}{2}]$ | B. | $[{\frac{1}{5},\frac{1}{2}}]$ | C. | $[{\frac{1}{5},+∞})$ | D. | $(-∞,\frac{1}{5}]$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | EF∥GH | B. | EH∥FG | C. | EH∥平面BCD | D. | FG∥平面ABD |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | (1,+∞) | B. | (-1,1) | C. | (-∞,-1) | D. | (-∞,-1)∪(1,+∞) |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com