分析 (1)通過(guò)對(duì)an+1=$\frac{2{a}_{n}}{2+{a}_{n}}$變形同時(shí)取倒數(shù),整理可知數(shù)列{$\frac{1}{{a}_{n}}$}是首項(xiàng)為1、公差為$\frac{1}{2}$的等差數(shù)列,進(jìn)而計(jì)算可得結(jié)論;
(2)通過(guò)(1)裂項(xiàng)可知$\frac{{a}_{n}}{n}$=2($\frac{1}{n}$-$\frac{1}{n+1}$),進(jìn)而并項(xiàng)相加即得結(jié)論;
(3)通過(guò)(2)放縮、裂項(xiàng)可知${{a}_{n}}^{2}$<2($\frac{1}{n}$-$\frac{1}{n+2}$),進(jìn)而并項(xiàng)相加即得結(jié)論.
解答 (1)解:∵an+1=$\frac{2{a}_{n}}{2+{a}_{n}}$,
∴$\frac{1}{{a}_{n+1}}$=$\frac{2+{a}_{n}}{2{a}_{n}}$=$\frac{1}{2}$+$\frac{1}{{a}_{n}}$,
又∵$\frac{1}{{a}_{1}}$=1,
∴數(shù)列{$\frac{1}{{a}_{n}}$}是首項(xiàng)為1、公差為$\frac{1}{2}$的等差數(shù)列,
∴$\frac{1}{{a}_{n}}$=1+$\frac{1}{2}$(n-1)=$\frac{n+1}{2}$,
∴an=$\frac{2}{n+1}$;
(2)解:由(1)可知,$\frac{{a}_{n}}{n}$=$\frac{2}{n(n+1)}$=2($\frac{1}{n}$-$\frac{1}{n+1}$),
∴Sn=2(1-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+…+$\frac{1}{n}$-$\frac{1}{n+1}$)=$\frac{2n}{n+1}$;
(3)證明:由(2)可知,${{a}_{n}}^{2}$=$\frac{4}{(n+1)^{2}}$<$\frac{4}{n(n+2)}$=2($\frac{1}{n}$-$\frac{1}{n+2}$),
∴a12+a22+a32+…+an2<2(1-$\frac{1}{3}$+$\frac{1}{2}$-$\frac{1}{4}$+…+$\frac{1}{n}$-$\frac{1}{n+2}$)
=2(1+$\frac{1}{2}$-$\frac{1}{n+1}$-$\frac{1}{n+2}$)
=3-2($\frac{1}{n+1}$+$\frac{1}{n+2}$)
<3.
點(diǎn)評(píng) 本題是一道關(guān)于數(shù)列與不等式的綜合題,考查數(shù)列的通項(xiàng),考查放縮法,注意解題方法的積累,屬于中檔題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 16 | B. | 25 | C. | 36 | D. | 49 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | $\frac{97}{16}$ | B. | $\frac{11}{2}$ | C. | $\frac{167}{28}$ | D. | $\frac{38}{7}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | z≥y>x | B. | z≥x>y | C. | x>z≥y | D. | z>x≥y |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 13 | B. | 14 | C. | 15 | D. | 16 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 0 | B. | $\frac{1}{2}$ | C. | 1 | D. | 2 |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com