欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

精英家教網 > 高中數學 > 題目詳情
在楊輝三角形中,每一行除首末兩個數之外,其余每個數都等于它肩上的兩數之和.
(1)試用組合數表示這個一般規(guī)律;
(2)在數表中試求第n行(含第n行)之前所有數之和;
(3)試探究在楊輝三角形的某一行能否出現三個連續(xù)的數,使它們的比是3:4:5,并證明你的結論.
第0行       1
第1行       1 1
第2行      1 2 1
第3行     1 3 3 1
第4行    1 4 6 4 1
第5行   1 5 10 10 5 1
第6行  1 6 15 20 15 6 1.
分析:(1)從楊輝三角形中的數字看出,每一行除首末兩個數之外,其余每個數都等于它肩上的兩數之和,符合組合數的第二條性質;
(2)楊輝三角中第n行的所有數是二項展開式(1+x)n
=C
0
n
+C
1
n
x
+C
2
n
x2+…
+C
n
n
xn
的所有二項式系數的和,取x=1可得第n行的所有數字和為2n,然后利用等比數列求和;
(3)假設在楊輝三角形的某一行能出現三個連續(xù)的數,使它們的比是3:4:5,由此列兩個關于n和r的方程組,能夠解出對應的n和r的值,說明假設成立.
解答:解:(1)設表中任一不為1的數為
C
r
n+1
,它肩上的兩個數分別為
C
r-1
n
,C
r
n
,則有
C
r
n+1
=C
r-1
n
+C
r
n

(2)楊輝三角中第n行的所有數可以看做是二項展開式(1+x)n
=C
0
n
+C
1
n
x
+C
2
n
x2+…
+C
n
n
xn
的所有二項式系數的和,取x=1可得第n行的所有數字和為2n,所以數表中第n行(含第n行)之前所有數之和為1+2+22+…+2n
=
1-2n+1
1-2
=2n+1-1;
(3)設
C
r-1
n
:C
r
n
:C
r+1
n
=3:4:5

C
r-1
n
C
r
n
=
3
4
,得
r
n-r+1
=
3
4
,即3n-7r+3=0  ①
C
r
n
C
r+1
n
=
4
5
,得
r+1
n-r
=
4
5
,即4n-9r-5=0  ②
聯立①②解得n=62,r=27.
所以在楊輝三角形的某一行能出現三個連續(xù)的數
C
26
62
,C
27
62
,C
28
62
,使它們的比是3:4:5.
點評:本題考查了組合及組合數公式,考查了類比推理,解答此題的關鍵是明確楊輝三角中的每一行的數都是在n取不同值時的二項展開式的二項式系數,是基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

如圖下所示,楊輝三角形中每一行除首末兩個數之外,其余每一個數都等于它肩上的兩個數的和.
(1)試用組合數表示這一規(guī)律;
(2)在數表中試求前n行(含第n行)所有數的和;
(3)試探究在楊輝三角形的一行能否出現三個相鄰的數,使得它們的比為3:4:5,并證明你的結論.
         1
       1   1
     1   2   1
   1   3   3   1
1   4   6   4   1

查看答案和解析>>

同步練習冊答案