分析:(1)當(dāng)
a=-時(shí),求導(dǎo)函數(shù),由導(dǎo)數(shù)正負(fù)可確定函數(shù)的單調(diào)性;
(2)對(duì)?x
1,x
2∈R,有|f(x
1)-f(x
2)|≥4|e
x1-e
x2|,兩邊同除以|x
1-x
2|,等價(jià)于|f′(x)|≥4e
x,由此可求a的取值范圍.
解答:解:(1)當(dāng)
a=-時(shí),求導(dǎo)函數(shù)可得f′(x)=-e
2x+
令f′(x)>0可得x<-
ln2,令f′(x)<0可得x>-
ln2
∴函數(shù)的單調(diào)增區(qū)間為(-∞,-
ln2),單調(diào)減區(qū)間為(-
ln2,+∞);
(2)∵對(duì)?x
1,x
2∈R,有|f(x
1)-f(x
2)|≥4|e
x1-e
x2|,
∴兩邊同除以|x
1-x
2|,可得|f′(x)|≥4e
x,
∴|2ae
2x+(a+1)|≥4e
x,
∵a<-1
∴2ae
2x+4e
x+(a+1)≤0
令e
x=t(t>0),則2at
2+4t+(a+1)≤0
∵a<-1,∴
0<-<1,a+1<0
∴△=16-8a(a+1)≤0
∴(a+2)(a-1)≥0
∴a≥1或a≤-2.
∵a<-1,
∴a≤-2
點(diǎn)評(píng):本題考查導(dǎo)數(shù)知識(shí)的運(yùn)用,考查函數(shù)的單調(diào)性,考查導(dǎo)數(shù)概念,考查恒成立問(wèn)題,屬于中檔題.