分析 (1)采用迭加法,利用遞推關(guān)系an+1-an=2n,代入變式an=a1+(a2-a1)+(a3-a2)+…+(an-an-1)即可求出an
(2)采用疊乘法,由$\frac{{a}_{n+1}}{{a}_{n}}$=$\frac{n}{n+1}$,即可導(dǎo)出每一項(xiàng)與前一項(xiàng)的比值,$\frac{{a}_{n}}{{a}_{n-1}}$=$\frac{n-1}{n}$,$\frac{{a}_{n-1}}{{a}_{n-2}}$=$\frac{n-2}{n-1}$,…$\frac{{a}_{2}}{{a}_{1}}$=$\frac{1}{2}$,相乘得出$\frac{{a}_{n}}{{a}_{1}}$=$\frac{1}{n}$,驗(yàn)證n=1,即可得出通項(xiàng)公式.
解答 解:(1)∵a1=1,an+1=an+2n(n∈N*);
∴an-an-1=2(n-1),
得出:an-an-1=2(n-1),
an-1-an-2=2(n-2),
…
a2-a1=2×1,
n-1個(gè)式子相加得出:an-a1=2(1+2+3+…+(n-1))=n(n-1),
∴an=n(n-1)+1,n≥2
n=1時(shí),a1=1×(1-1)+1=1,符合公式,
通項(xiàng)公式an=n(n-1)+1.
(2)∵a1=1,an+1=$\frac{n}{n+1}$an(n∈N*).
∴根據(jù)遞推關(guān)系式得出:$\frac{{a}_{n}}{{a}_{n-1}}$=$\frac{n-1}{n}$,
$\frac{{a}_{n-1}}{{a}_{n-2}}$=$\frac{n-2}{n-1}$,
…$\frac{{a}_{2}}{{a}_{1}}$=$\frac{1}{2}$,
n-1個(gè)式子相乘得出:$\frac{{a}_{n}}{{a}_{1}}$=$\frac{1}{n}$,n≥2,
即an=$\frac{1}{n}$×1=$\frac{1}{n}$,n≥2,
n=1,a1=$\frac{1}{1}$=1,符合題意,
∴其通項(xiàng)公式an=$\frac{1}{n}$,
點(diǎn)評(píng) 本例主要復(fù)習(xí)求通項(xiàng)公式的幾種方法:迭加法、迭乘法;屬于數(shù)列求通項(xiàng)的重要方法,難度適中,屬于中檔題,關(guān)鍵是驗(yàn)證n=1的情況,思路要嚴(yán)密.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $(1,\sqrt{2}]$ | B. | $[\sqrt{2},+∞)$ | C. | $(1,\sqrt{3}]$ | D. | $[\sqrt{3},+∞)$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | -10<a≤0 | B. | -1<a≤0 | C. | 0≤a<1 | D. | 0≤a<10 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 11? | B. | 12? | C. | 13? | D. | 14? |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 在圓外 | B. | 在圓上 | C. | 在圓內(nèi) | D. | 不能確定 |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com