【題目】半圓
的直徑的兩端點(diǎn)為
,點(diǎn)
在半圓
及直徑
上運(yùn)動,若將點(diǎn)
的縱坐標(biāo)伸長到原來的2倍(橫坐標(biāo)不變)得到點(diǎn)
,記點(diǎn)
的軌跡為曲線
.
(1)求曲線
的方程;
(2)若稱封閉曲線上任意兩點(diǎn)距離的最大值為該曲線的“直徑”,求曲線
的“直徑”.
【答案】(1)答案見解析 (2)
.
【解析】
(1)設(shè)
,則
,由題意可知當(dāng)
在直徑
上時(shí),顯然
;當(dāng)
在半圓
上時(shí),
,即可求得答案;
(2)設(shè)曲線
上兩動點(diǎn)
,顯然
,
至少有一點(diǎn)在橢圓上時(shí)
才能取得最大,不妨設(shè)
,
,根據(jù)不等式性質(zhì),即可求得曲線
的“直徑”.
(1)設(shè)
,則
,
由題意可知當(dāng)
在直徑
上時(shí),顯然
;
當(dāng)
在半圓
上時(shí),
,
曲線
的方程為
或
.
(2)設(shè)曲線
上兩動點(diǎn)
,
顯然
,
至少有一點(diǎn)在橢圓上時(shí)
才能取得最大,
不妨設(shè)
,
則
,
![]()
![]()
![]()
等號成立時(shí):
,
或
,
,
由兩點(diǎn)距離公式可得:
,
故曲線
的“直徑”為
.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某條公共汽車線路收支差額
與乘客量
的函數(shù)關(guān)系如下圖所示(收支差額=車票收入-支出費(fèi)用),由于目前本條線路虧損,公司有關(guān)人員提出了兩條建議:建議(1)不改變車票價(jià)格,減少支出費(fèi)用;建議(2)不改變支出費(fèi)用,提高車票價(jià)格.下面給出的四個(gè)圖形中,實(shí)線和虛線分別表示目前和建議后的函數(shù)關(guān)系,則( )
![]()
A.①反映建議(2),③反映建議(1)B.①反映建議(1),③反映建議(2)
C.②反映建議(1),④反映建議(2)D.④反映建議(1),②反映建議(2)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓
,橢圓
(
)的短軸長等于圓
半徑的
倍,
的離心率為
.
(1)求
的方程;
(2)若直線
與
交于
兩點(diǎn),且與圓
相切,證明:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,函數(shù)
的圖像與函數(shù)
的圖像關(guān)于直線
對稱.
(1)求函數(shù)
的解析式;
(2)若函數(shù)
在區(qū)間
上的值域?yàn)?/span>
,求實(shí)數(shù)
的取值范圍;
(3)設(shè)函數(shù)
,試用列舉法表示集合
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司為提高市場銷售業(yè)績,設(shè)計(jì)了一套產(chǎn)品促銷方案,并在某地區(qū)部分營銷網(wǎng)點(diǎn)進(jìn)行試點(diǎn).運(yùn)作一年后,對“采取促銷”和“沒有采取促銷”的營銷網(wǎng)點(diǎn)各選了50個(gè),對比上一年度的銷售情況,分別統(tǒng)計(jì)了它們的年銷售總額,并按年銷售總額增長的百分點(diǎn)分成5組:
,
,
,
,
,分別統(tǒng)計(jì)后制成如圖所示的頻率分布直方圖,并規(guī)定年銷售總額增長10個(gè)百分點(diǎn)及以上的營銷網(wǎng)點(diǎn)為“精英店”.
“采用促銷”的銷售網(wǎng)點(diǎn)![]()
“不采用促銷”的銷售網(wǎng)點(diǎn)![]()
(1)請根據(jù)題中信息填充下面的列聯(lián)表,并判斷是否有
的把握認(rèn)為“精英店與采促銷活動有關(guān)”;
采用促銷 | 無促銷 | 合計(jì) | |
精英店 | |||
非精英店 | |||
合計(jì) | 50 | 50 | 100 |
(2)某“精英店”為了創(chuàng)造更大的利潤,通過分析上一年度的售價(jià)
(單位:元)和日銷量
(單位:件)(
)的一組數(shù)據(jù)后決定選擇
作為回歸模型進(jìn)行擬合.具體數(shù)據(jù)如下表,表中的![]()
|
|
|
|
|
|
|
45.8 | 395.5 | 2413.5 | 4.6 | 21.6 |
|
|
①根據(jù)上表數(shù)據(jù)計(jì)算
,
的值;
②已知該公司產(chǎn)品的成本為10元/件,促銷費(fèi)用平均5元/件,根據(jù)所求出的回歸模型,分析售價(jià)
定為多少時(shí)日利潤
可以達(dá)到最大.
附①:![]()
| 0.100 | 0.050 | 0.010 | 0.001 |
| 2.706 | 3.841 | 6.635 | 10.828 |
附②:對應(yīng)一組數(shù)據(jù)
,
其回歸直線
的斜率和截距的最小二乘法估計(jì)分別為
,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將一顆均勻的骰子擲兩次,第一次得到的點(diǎn)數(shù)記為
,第一次得到的點(diǎn)數(shù)記為
,則方程組
有唯一解的概率是___________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐
中,底面
為直角梯形,
,
,
,平面
平面
,
.
![]()
(1)求證:
;
(2)求二面角
的余弦值;
(3)在棱
上是否存在點(diǎn)
,使得
平面
?若存在,求
的值?若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)
,![]()
,記
.
(1)若
,
,當(dāng)
時(shí),求
的最大值;
(2)若
,
,且方程![]()
有兩個(gè)不相等的實(shí)根
、
,求
的取值范圍;
(3)若
,
,
,且a、b、c是三角形的三邊長,試求滿足等式:
有解的最大的x的范圍.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com