欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

12.己知實數(shù)x,y滿足條件$\left\{{\begin{array}{l}{x≤0}\\{x-y≥0}\\{2x+y+k≤0}\end{array}}\right.$(k為常數(shù)),若z=x+3y的最大值為-8,則k的值為( 。
A.4B.6C.8D.10

分析 由約束條件作出可行域,化目標(biāo)函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,聯(lián)立方程組求出最優(yōu)解的坐標(biāo),代入目標(biāo)函數(shù)得答案.

解答 解:由約束條件$\left\{{\begin{array}{l}{x≤0}\\{x-y≥0}\\{2x+y+k≤0}\end{array}}\right.$作出可行域如圖,

聯(lián)立$\left\{\begin{array}{l}{x-y=0}\\{2x+y+k=0}\end{array}\right.$,解得A($-\frac{k}{3},-\frac{k}{3}$),
化目標(biāo)函數(shù)z=x+3y為$y=-\frac{x}{3}+\frac{z}{3}$,
由圖可知,當(dāng)直線$y=-\frac{x}{3}+\frac{z}{3}$過A($-\frac{k}{3},-\frac{k}{3}$)時,直線在y軸上的截距最小,z有最小值為$-\frac{k}{3}+3×(-\frac{k}{3})=-\frac{4k}{3}=-8$,
解得k=6.
故選:B.

點評 本題考查簡單的線性規(guī)劃,考查了數(shù)形結(jié)合的解題思想方法,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.設(shè)f(x)是定義在(-∞,+∞)上的偶函數(shù),且當(dāng)x≥0時,f(x)=x3+1,則當(dāng)x<0時,f(x)=-x3+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知數(shù)列{an}是等比數(shù)列,Sn是前n項和,且S3=$\frac{7}{2}$,S6=$\frac{63}{2}$.
(1)求數(shù)列{an}的通項公式;
(2)求前8項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知函數(shù)f(x)是偶函數(shù),當(dāng)x>0時,f(x)為增函數(shù),設(shè)a=f(-$\frac{5}{2}$),b=f(2),c=f(3),則a,b,c的大小關(guān)系為( 。
A.b<a<cB.c<b<aC.b<c<aD.a<b<c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知點A是拋物線x2=4y的對稱軸與準線的交點,點B為拋物線的焦點,P在拋物線上且滿足|PA|=m|PB|,當(dāng)m取最大值時,點P恰好在以A,B為焦點的雙曲線上,則雙曲線的離心率為$\sqrt{2}+1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.若圓x2+y2-4x-4y-10=0上至少有三個不同的點,到直線l:y=x+b的距離為2$\sqrt{2}$,則b取值范圍為( 。
A.(-2,2)B.[-2,2]C.[0,2]D.[-2,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.從一箱產(chǎn)品中隨機地抽取一件,設(shè)事件A={抽到一等品},事件B={抽到二等品},事件C={抽到三等品},且已知P(A)=0.60,P(B)=0.25,P(C)=0.15.則事件“抽到的是二等品或三等品”的概率為(  )
A.0.6B.0.85C.0.75D.0.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知f(x)為R上的奇函數(shù),且x>0時f(x)=-x2+(a+2)x-a2+5(其中a為實常數(shù)).
(1)求f(0)的值;
(2)求x<0時f(x)的解析式;
(3)若f(x)在區(qū)間(0,2]上的最大值為2,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知數(shù)列{an}中.a(chǎn)1=2,a2=3,其前n項和Sn滿足Sn+2+Sn=2Sn+1+1(n∈N*);數(shù)列{bn}中,b1=a1,bn+1=4bn+6(n∈N*).
(1)求數(shù)列{an},{bn}的通項公式;
(2)設(shè)cn=bn+2+(-1)n-1λ•2${\;}^{{a}_{n}}$(λ為非零整數(shù),n∈N*),試確定λ的值,使得對任意n∈N*,都有cn+1>cn成立.

查看答案和解析>>

同步練習(xí)冊答案