欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

精英家教網 > 高中數學 > 題目詳情
若f(x)=
x - 2
x - 3
,g(x)=
x - 3
 x - 2
,則f(x)•g(x)=______.
先求出兩個函數的定義域,
f(x)=
x - 2
x - 3
,的定義域為x≠3;
g(x)=
x - 3
 x - 2
,的定義域為x>2,
∴f(x)•g(x)的定義域為(2,3)∪(3,+∞),
且:f(x)•g(x)=
x - 2
x - 3
×
x - 3
 x - 2
=
x-2

故答案為:
x-2
,x∈(2,3)∪(3,+∞).
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知函數f(x)的定義域為R,且對于一切實數x滿足f(x+2)=f(2-x),f(x+7)=f(7-x)
(1)若f(5)=9,求:f(-5);
(2)已知x∈[2,7]時,f(x)=(x-2)2,求當x∈[16,20]時,函數g(x)=2x-f(x)的表達式,并求出g(x)的最大值和最小值;
(3)若f(x)=0的一根是0,記f(x)=0在區(qū)間[-1000,1000]上的根數為N,求N的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數y=f(x)圖象上的點到直線x-y-3=0距離的最小值為
2
,求a的值;
(2)關于x的不等式(x-1)2>f(x)的解集中的整數恰有3個,求實數a的取值范圍;
(3)對于函數f(x)與g(x)定義域上的任意實數x,若存在常數k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數f(x)與g(x)的“分界線”.設a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

下列說法:①若f(x)=ax2+(2a+b)x+2(其中x∈[2a-1,+a+4])是偶函數,則實數b=2;②f(x)=
2009-x2
+
x2-2009
既是奇函數又是偶函數;③已知f(x)是定義在R上的奇函數,若當x∈[0,+∞]時,f(x)=x(1+x),則當x∈R時,f(x)=x(1+|x|);④已知f(x)是定義在R上的不恒為零的函數,且對任意的x,y∈R都滿足f(x•y)=x•f(y)+y•f(x),則f(x)是奇函數.其中所有正確命題的序號是 ______.

查看答案和解析>>

科目:高中數學 來源:徐州模擬 題型:解答題

設函數f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數y=f(x)圖象上的點到直線x-y-3=0距離的最小值為2
2
,求a的值;
(2)關于x的不等式(x-1)2>f(x)的解集中的整數恰有3個,求實數a的取值范圍;
(3)對于函數f(x)與g(x)定義域上的任意實數x,若存在常數k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數f(x)與g(x)的“分界線”.設a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源:0119 期中題 題型:填空題

下列說法:①若f(x)=ax2+(2a+b)x+2(其中x∈[2a-1,a+4])是偶函數,則實數b=2;
既是奇函數又是偶函數;
③已知f(x)是定義在R上的奇函數,若當x∈[0,+∞)時,f(x)=x(1+x),則當x∈R時,f(x)=x(1+|x|);
④已知f(x)是定義在R上的不恒為零的函數,且對任意的x,y∈R都滿足f(x·y)=x·f(y)+y·f(x),則f(x)是奇函數;
其中所有正確命題的序號是(    )。

查看答案和解析>>

同步練習冊答案