在平面直角坐標(biāo)系
中,曲線
的焦點(diǎn)
,點(diǎn)
在曲線
上,
若
為圓心的圓與曲線
的準(zhǔn)線相切,圓面積為
,則
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
雙曲線
與拋物線
有一個(gè)公共焦點(diǎn)
,雙曲線上過點(diǎn)
且垂直
實(shí)軸的弦長(zhǎng)為
,則雙曲線的離心率等于 ( )
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知拋物線
(
)的準(zhǔn)線與
軸交于點(diǎn)![]()
.
(1)求拋物線的方程,并寫出焦點(diǎn)坐標(biāo);
(2)是否存在過焦點(diǎn)的直線
(直線與拋物線交于點(diǎn)
,
),使得三角形
的面積
?若存在,請(qǐng)求出直線
的方程;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
設(shè)函數(shù)![]()
,其中
,
為正整數(shù),
、
、
均為常數(shù),曲線
在
處的切線方程為
.
(1)求
、
、
的值;
(2)求函數(shù)
的最大值;
(3)證明:對(duì)任意的
都有
.(
為自然對(duì)數(shù)的底)
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com