分析 (Ⅰ)由已知展開數(shù)量積,求出AB•AC的值,代入三角形面積公式得答案;
(Ⅱ)解法1:由AB=5,結(jié)合(Ⅰ)求得AC,延長(zhǎng)AD到E,使AD=DE,連結(jié)BE,得到四邊形ABEC為平行四邊形,求出∠ABE=60°,設(shè)AD=x,則AE=2x,在△ABE中,由余弦定理求得x值得答案;
解法2:在△ABC中,由余弦定理得BC,再由正弦定理求得∠ACD的正弦值,進(jìn)一步求得其余弦值,在△ADC中,利用余弦定理求得AD;
解法3:在△ABC中,由余弦定理得BC,在△ABC中,由余弦定理求出∠ACB,在△ADC中,由余弦定理求得AD.
解答
解:(Ⅰ)∵$\overrightarrow{AB}•\overrightarrow{AC}=-\frac{15}{2}$,
∴$AB•AC•cos∠BAC=-\frac{1}{2}AB•AC=-\frac{15}{2}$,
即AB•AC=15,
∴${S_{△ABC}}=\frac{1}{2}AB•ACsin∠BAC=\frac{1}{2}×15×\frac{{\sqrt{3}}}{2}=\frac{{15\sqrt{3}}}{4}$;
(Ⅱ)解法1:由AB=5,得AC=3,
延長(zhǎng)AD到E,使AD=DE,連結(jié)BE,
∵BD=DC,
∴四邊形ABEC為平行四邊形,
∴∠ABE=60°,且BE=AC=3,
設(shè)AD=x,則AE=2x,在△ABE中,由余弦定理得:(2x)2=AB2+BE2-2AB•BEcos∠ABE=25+9-15=19,
解得$x=\frac{{\sqrt{19}}}{2}$,即AD的長(zhǎng)為$\frac{{\sqrt{19}}}{2}$;
解法2:由AB=5,得AC=3,
在△ABC中,由余弦定理得:BC2=AB2+AC2-2AB•ACcos∠BAC=25+9+15=49,
得BC=7,
由正弦定理得:$\frac{BC}{sin∠BAC}=\frac{AB}{sin∠ACD}$,
得$sin∠ACD=\frac{ABsin∠BAC}{BC}=\frac{{5×\frac{{\sqrt{3}}}{2}}}{7}=\frac{{5\sqrt{3}}}{14}$,
∵0°<∠ACD<90°,
∴$cos∠ACD=\sqrt{1-{{sin}^2}∠ACD}=\frac{11}{14}$,
在△ADC中,$A{D^2}=A{C^2}+C{D^2}-2AC•CDcos∠ACD=9+\frac{49}{4}-2×3×\frac{7}{2}×\frac{11}{14}=\frac{19}{4}$,
解得$AD=\frac{{\sqrt{19}}}{2}$;
解法3:由AB=5,得AC=3,
在△ABC中,由余弦定理得:BC2=AB2+AC2-2AB•ACcos∠BAC=25+9+15=49,
得BC=7,
在△ABC中,$cos∠ACB=\frac{{A{C^2}+B{C^2}-A{B^2}}}{2AC•BC}=\frac{9+49-25}{2×3×7}=\frac{11}{14}$,
在△ADC中,由$A{D^2}=A{C^2}+C{D^2}-2AC•CDcos∠ACD=9+\frac{49}{4}-2×3×\frac{7}{2}×\frac{11}{14}=\frac{19}{4}$,
解得$AD=\frac{{\sqrt{19}}}{2}$.
點(diǎn)評(píng) 本題考查平面向量的數(shù)量積運(yùn)算,考查了正弦定理和余弦定理在解三角形中的應(yīng)用,是中檔題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | a、b、c都是奇數(shù) | |
| B. | a、b、c都是偶數(shù) | |
| C. | a、b、c中至少有兩個(gè)奇數(shù) | |
| D. | a、b、c中至少有兩個(gè)奇數(shù)或都是偶數(shù) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{3}{7}$ | B. | $\frac{7}{3}$ | C. | $\frac{3}{4}$ | D. | $\frac{4}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 2i | B. | -2i | C. | -2 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 命題p∨q是假命題 | B. | 命題p∧q是真命題 | ||
| C. | 命題p∨(¬q)是假命題 | D. | 命題p∧(¬q)是真命題 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com