分析 (1)通過設(shè)公差為d,利用${{a}_{3}}^{2}$=a2a5、S6=45得a2=d=3,進(jìn)而可得結(jié)論;
(2)由(1)計(jì)算可得pn=2+$\frac{2}{n}$-$\frac{2}{n+1}$,并項(xiàng)相加可得p1+p2+…+pn-2n=2-$\frac{2}{n+1}$,進(jìn)而可得結(jié)論.
解答 解:(1)設(shè)公差為d,由已知,得${{a}_{3}}^{2}$=a2a5,
即$({a}_{2}+2d)^{2}$=a2(a2+3d),解得a2=d,
由S6=45得2a2+3d=15,∴a2=d=3,
∴數(shù)列{an}的通項(xiàng)an=3n-3,
前n項(xiàng)和Sn=$\frac{3n(n-1)}{2}$;
(2)結(jié)論:存在最小的正整數(shù)M=2,使不等式p1+p2+…+pn-2n≤M恒成立.
理由如下:
pn=$\frac{{S}_{n+2}}{{S}_{n+1}}$+$\frac{n-1}{n+1}$=$\frac{\frac{3(n+2)(n+1)}{2}}{\frac{3n(n+1)}{2}}$+$\frac{n-1}{n+1}$=2+$\frac{2}{n}$-$\frac{2}{n+1}$,
∴p1+p2+…+pn-2n=2(1-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{4}$+…+$\frac{1}{n}$-$\frac{1}{n+1}$)=2-$\frac{2}{n+1}$.
由n為整數(shù),可得p1+p2+…+pn-2n<2,
故存在最小的正整數(shù)M=2,使不等式p1+p2+…+pn-2n≤M恒成立.
點(diǎn)評(píng) 本題考查求數(shù)列的通項(xiàng)及前n項(xiàng)和,判定和的取值范圍,注意解題方法的積累,屬于中檔題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{\sqrt{3}}{3}$ | B. | $\sqrt{3}$ | C. | $\sqrt{2}$ | D. | $\frac{\sqrt{2}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com