分析 利用同角三角函數的基本關系求得sinα的值,再利用兩角差的余弦公式求得cos($\frac{π}{6}$-α)和cos(${\frac{π}{6}$+α)的值.
解答 解:$cosα=-\frac{4}{5}$,且$\frac{π}{2}<α<π$,所以$sinα=\sqrt{1-{{({-\frac{4}{5}})}^2}}=\frac{3}{5}$,
∴$cos({\frac{π}{6}-α})=cos\frac{π}{6}cosα+sin\frac{π}{6}sinα=\frac{{\sqrt{3}}}{2}×({-\frac{4}{5}})+\frac{1}{2}×\frac{3}{5}=\frac{{3-4\sqrt{3}}}{10}$,
$cos({\frac{π}{6}+α})=cos\frac{π}{6}cosα-sin\frac{π}{6}sinα=\frac{{\sqrt{3}}}{2}×({-\frac{4}{5}})-\frac{1}{2}×\frac{3}{5}=-\frac{{3+4\sqrt{3}}}{10}$.
點評 本題主要考查同角三角函數的基本關系,兩角差的余弦公式的應用,屬于基礎題.
科目:高中數學 來源: 題型:解答題
| 年收入x/萬元 | 2 | 4 | 4 | 6 | 6 | 6 | 7 | 7 | 8 | 10 |
| 年支出y/萬元 | 0.9 | 1.4 | 1.6 | 2.0 | 2.1 | 1.9 | 1.8 | 2.1 | 2.2 | 2.3 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
| x | 2 | 4 | 5 | 6 | 8 |
| y | 20 | 40 | 60 | 70 | 80 |
| A. | -0.5萬元 | B. | 0.5萬元 | C. | 1.5萬元 | D. | 2.5萬元 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
| A. | p1,p2 | B. | p2,p3 | C. | p2,p4 | D. | p3,p4 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
| A. | $\frac{4π}{3}$ | B. | $\frac{5π}{3}$ | C. | 2π | D. | $π+\frac{2}{3}$ |
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com