【題目】如圖是拋物線形拱橋,當(dāng)水面在l時,拱頂離水面4米,水面寬8米.水位上升1米后,水面寬為( ) ![]()
A.
米
B.2
米
C.3
米
D.4
米
【答案】D
【解析】解:建立平面直角坐標系,設(shè)橫軸x通過AB,縱軸y通過AB中點O且通過C點,則通過畫圖可得知O為原點, ![]()
拋物線以y軸為對稱軸,且經(jīng)過A,B兩點,OA和OB可求出為AB的一半4米,拋物線頂點C坐標為(0,4),
通過以上條件可設(shè)頂點式y(tǒng)=ax2+4,其中a可通過代入A點坐標(﹣4,0),
到拋物線解析式得出:a=﹣
,所以拋物線解析式為y=﹣
x2+4,
當(dāng)水面上升1米,通過拋物線在圖上的觀察可轉(zhuǎn)化為:
當(dāng)y=1時,對應(yīng)的拋物線上兩點之間的距離,也就是直線y=1與拋物線相交的兩點之間的距離,
可以通過把y=1代入拋物線解析式得出:
1=﹣
x2+4,
解得:x=±2
,
所以水面寬度增加到4
米,
故選:D.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,設(shè)F(x)=x2f(x),則F(x)是( )
A.奇函數(shù),在(﹣∞,+∞)上單調(diào)遞減
B.奇函數(shù),在(﹣∞,+∞)上單調(diào)遞增
C.偶函數(shù),在(﹣∞,0)上遞減,在(0,+∞)上遞增
D.偶函數(shù),在(﹣∞,0)上遞增,在(0,+∞)上遞減
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】海水養(yǎng)殖場進行某水產(chǎn)品的新、舊網(wǎng)箱養(yǎng)殖方法的產(chǎn)量對比,收獲時各隨機抽取了100 個網(wǎng)箱,測量各箱水產(chǎn)品的產(chǎn)量(單位:kg).其頻率分布直方圖如下:
![]()
(1)設(shè)兩種養(yǎng)殖方法的箱產(chǎn)量相互獨立,記A表示事件:“舊養(yǎng)殖法的箱產(chǎn)量低于50kg,新養(yǎng)殖法的箱產(chǎn)量不低于50kg”,估計A的概率;
(2)填寫下面列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有99%的把握認為箱產(chǎn)量與養(yǎng)殖方法有關(guān):
箱產(chǎn)量<50kg | 箱產(chǎn)量≥50kg | |
舊養(yǎng)殖法 | ||
新養(yǎng)殖法 |
(3)根據(jù)箱產(chǎn)量的頻率分布直方圖,求新養(yǎng)殖法箱產(chǎn)量的中位數(shù)的估計值(精確到0.01).
附:
, ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】佛山某中學(xué)高三(1)班排球隊和籃球隊各有10名同學(xué),現(xiàn)測得排球隊10人的身高(單位:cm)分別是:162、170、171、182、163、158、179、168、183、168,籃球隊10人的身高(單位:cm)分別是:170、159、162、173、181、165、176、168、178、179.
(1)請把兩隊身高數(shù)據(jù)記錄在如圖所示的莖葉圖中,并指出哪個隊的身高數(shù)據(jù)方差較。o需計算);![]()
(2)現(xiàn)從兩隊所有身高超過178cm的同學(xué)中隨機抽取三名同學(xué),則恰好兩人來自排球隊一人來自籃球隊的概率是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若a,b在區(qū)間(0,1)內(nèi),則橢圓
=1(a>b>0)與直線l:x+y=1在第一象限內(nèi)有兩個不同的交點的概率為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)=
,其中
=(2cosx,﹣
sin2x),
=(cosx,1),x∈R.
(1)求f(x)的周期及單調(diào)遞增區(qū)間;
(2)在△ABC中,角A,B,C所對的邊分別為a,b,c,f(A)=﹣1,a=
,且向量
與
共線,求邊長b和c的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)=x2+ax+b,g(x)=x2+cx+d,且f(2x+1)=4g(x),f′(x)=g′(x),f(5)=30,求a,b,c,d的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓錐曲線
(
為參數(shù))和定點
, F1 、 F2 是此圓錐曲線的左、右焦點,以原點 O 為極點,以 x 軸的正半軸為極軸建立極坐標系.
(1)求直線 AF2 的直角坐標方程;
(2)經(jīng)過點 F1 且與直線AF2 垂直的直線 l 交此圓錐曲線于M,N 兩點,求||MF1|-|NF1|| 的值.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com