分析 (1)過B作BD⊥AC,則b=acosC+ccosA,結(jié)合條件可得3bsinA=ccosA,得出tanA;
(2)根據(jù)面積公式和$\frac{c}=\sqrt{3}$計算b,c,再利用余弦定理得出a.
解答
解:(1)在△ABC中,過B作BD⊥AC,則b=AD+CD=acosC+ccosA.
∵b=acosC+3bsin(B+C)=acosC+3bsinA,
∴3bsinA=ccosA,∴$\frac{c}$=3tanA=$\sqrt{3}$,
∴tanA=$\frac{\sqrt{3}}{3}$,A=$\frac{π}{6}$.
(2)∵S△ABC=$\frac{1}{2}bc$sinA=$\frac{1}{4}bc$=$\sqrt{3}$,
∴bc=4$\sqrt{3}$,
∵c=$\sqrt{3}b$,∴b=2,c=2$\sqrt{3}$.
由余弦定理得a2=b2+c2-2bccosA=4+12-12=4.
∴a=2.
點評 本題考查了,余弦定理,三角形的面積公式,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | -2 | B. | -1 | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{{3\sqrt{3}}}{2}$ | B. | $\frac{3}{2}$ | C. | $\frac{{\sqrt{3}}}{2}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{π}{4}$ | B. | $1-\frac{π}{4}$ | C. | $\frac{π}{8}$ | D. | $1-\frac{π}{8}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | ①③ | B. | ①④ | C. | ②③ | D. | ②④ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 射線 | B. | 橢圓 | C. | 雙曲線的一支 | D. | 拋物線 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com