欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

16.如圖,正三角形ABC的邊長為1,它是水平放置的一個平面圖形的直觀圖,則原圖形的面積是( 。
A.$\frac{{\sqrt{3}}}{2}$B.$\sqrt{3}$C.$\frac{{\sqrt{6}}}{2}$D.$\frac{{\sqrt{6}}}{4}$

分析 根據(jù)斜二側畫法原理還原原平面圖形,得出原圖形的底和高,得出面積.

解答 解:∠AOC=45°,∠OAC=120°,AC=1,
在△AOC中,由正弦定理得$\frac{OC}{sin120°}=\frac{1}{sin45°}$,解得OC=$\frac{\sqrt{6}}{2}$.
∴原水平放置的三角形的高為2OC=$\sqrt{6}$,底邊長為AB=1,
∴原圖形的面積為$\frac{1}{2}×\sqrt{6}×1$=$\frac{\sqrt{6}}{2}$.
故選:C.

點評 本題考查了斜二測畫法原理,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

6.已知函數(shù)f(x)=x2-cosx,x∈[-2,2],若f(2m-1)>f(m),則m的取值范圍為[-$\frac{1}{2}$,$\frac{1}{3}$)∪(1,$\frac{3}{2}$].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知函數(shù)f(x)=ax-lnx,其中x>0,a∈R.
(1)討論函數(shù)f(x)的單調區(qū)間;
(2)若存在x>0,使得f′(x)>lnx,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.為了促進人口的均衡發(fā)展,我國從2016年1月1日起,全國統(tǒng)一實施全面放開兩孩政策.為了解適齡國民對放開生育二胎政策的態(tài)度,某部門選取70后和80后年齡段的人作為調查對象,進行了問卷調查,其中,持“支持生二胎”、“不支持生二胎”和“保留意見”態(tài)度的人數(shù)如表所示:
(1)在所有參與調查的人中,用分層抽樣的方法抽取n個人,其中持“支持”態(tài)度的人共36人,求n的值;
(2)在持“不支持”態(tài)度的人中,仍用分層抽樣的方法抽取5人,并將其看成一個總體,從這5人中任意選取2人,求至少有1個80后的概率.
支持保留不支持
80后780420200
70后120180300

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.已知f(x)是定義在R上的偶函數(shù),導函數(shù)為f′(x),當x∈(-∞,0]時,f(x)有唯一的零點-3,且恒有xf′(x)<f(-x),則滿足不等式$\frac{f(x)}{x}≤0$的實數(shù)x的取值范圍是[-3,0)∪[3,+∞).(結果用集合或區(qū)間表示)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.設函數(shù) f(x)=lnx-$\frac{1}{2}$ax2-bx.
(1)當a=$\frac{1}{2}$,b=$-\frac{1}{2}$時,求函數(shù)f(x)的單調區(qū)間;
(2)令F(x)=f(x)+$\frac{1}{2}$ax2+bx+$\frac{a}{x}$(0<x<3),其圖象上任意一點P(x0,y0)處切線的斜率k≤$\frac{1}{2}$恒成立,求實數(shù)a的取值范圍;
(3)當a=0,b=-1時,方程f(x)=mx在區(qū)間[1,e2]內恰有兩個實數(shù)解,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.△ABC的三個內角A、B、C的對邊分別為a,b,c,A、B、C成等差數(shù)列,且$\overline{AB}•(\overline{AB}-\overline{AC})=18$.
(1)求ac的值;
(2)若sinA、sinB、sinC也成等差數(shù)列,試判斷△ABC的形狀,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.為貫徹“咬文嚼字抓理解,突出重點抓記憶”的學習思想.某校從高一年級和高二年級各選取100名同學進行現(xiàn)學段基本概念知識競賽.圖(1)和圖(2)分別是對高一年級和高二年級參加競賽的學生成績按[40,50),[50,60),[60,70),[70,80]分組,得到的頻率分布直方圖.

(1)分別計算參加這次知識競賽的兩個年級學生的平均成績;(注:統(tǒng)計方法中,同一組數(shù)據(jù)常用該組區(qū)間的中點值作為代表)
(2)完成下面2×2列聯(lián)表,并回答是否有99%的把握認為“兩個年級學生現(xiàn)學段對基本知識的了解有差異”?
成績小于60分人數(shù)成績不小于60分人數(shù)合計
高一年級
高二年級
合計
附:K2=$\frac{n(ad-bc)2}{(a+b)(c+d)(a+c)(b+d)}$.臨界值表:
P(K2≥k)0.100.050.010
k2.7063.8416.635

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.已知函數(shù)f(x)=$\sqrt{3}$sinxcosx-cos2x-$\frac{1}{2}$,x∈R,則函數(shù)f(x)的最小值為-2,函數(shù)f(x)的遞增區(qū)間為[$-\frac{π}{6}+kπ,\frac{π}{3}+kπ$],k∈Z.

查看答案和解析>>

同步練習冊答案