分析 (1)由f(3)=f(2),再利用不等式的性質(zhì)即可得出a+b>1,使用分析法證明a+b<$\frac{4}{3}$.
解答 證明:(1)先證a+b>1,
∵f(3)=f(2),
∴a3-b3=a2-b2.即(a-b)(a2+ab+b2)=(a+b)(a-b),
∵a,b∈R+,且a≠b,
∴a+b=a2+ab+b2<a2+2ab+b2=(a+b)2,
∴a+b>1.
(2)再證a+b$<\frac{4}{3}$,
要證:a+b<$\frac{4}{3}$,
只須證:3(a+b)2<4(a+b),
即證:3(a2+2ab+b2)<4(a2+ab+b2),
即證:a2-2ab+b2>0.
即證:(a-b)2>0.
而(a-b)2>0在a≠b時(shí)恒成立.
綜上所述,1<a+b<$\frac{4}{3}$.
點(diǎn)評(píng) 本題考查了不等式的證明方法,屬于基礎(chǔ)題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | ①③ | B. | ①② | C. | ①②③ | D. | ②③ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | (2,12) | B. | (-2,12) | C. | 14 | D. | 10 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 0 | B. | 4 | C. | -3 | D. | -1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com