欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

【題目】下列判斷正確的是( )

A.”是“”的充分不必要條件

B.函數(shù)的最小值為2

C.時,命題“若,則”為真命題

D.命題“,”的否定是“

【答案】C

【解析】

求解對數(shù)不等式之后即可考查選項A是否正確,利用換元法可確定選項B中函數(shù)的最小值,利用原命題與逆否命題的關系可判斷C選項是否正確,否定全稱命題即可確定選項D是否正確.

逐一考查所給命題的真假:

對于選項A:由可得,即

的必要不充分條件,則題中的命題為假命題;

對于選項B:令

由對勾函數(shù)的性質可知函數(shù)單調遞增,其最小值為,則題中的命題為假命題;

對于選項C:考查其逆否命題:,則,

很明顯該命題為真命題,則題中的命題為真命題;

對于選項D:命題,的否定是,,則題中的命題為假命題;

故選:C.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,三棱柱的側面是圓柱的軸截面,C是圓柱底面圓周上不與A、B重合的一個點。

(1)若圓柱的軸截面是正方形,當點C是弧AB的中點時,求異面直線AB的所成角的大小(結果用反三角函數(shù)值表示);

(2)當點C是弧AB的中點時,求四棱錐體積與圓柱體積的比.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),其導函數(shù)設為.

(Ⅰ)求函數(shù)的單調區(qū)間;

(Ⅱ)若函數(shù)有兩個極值點,,試用表示

(Ⅲ)在(Ⅱ)的條件下,若的極值點恰為的零點,試求,這兩個函數(shù)的所有極值之和的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,直線的參數(shù)方程為為參數(shù)).以坐標原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程為

1)求曲線的直角坐標方程和直線的普通方程;

2)若直線與曲線交于兩點,設,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對于定義域為D的函數(shù)y=fx,如果存在區(qū)間[m,n]D,同時滿足:

①fx[m,n]內是單調函數(shù);

②當定義域是[m,n]時,fx的值域也是[m,n].則稱[m,n]是該函數(shù)的“和諧區(qū)間”.

1證明:[0,1]是函數(shù)y=fx=x2的一個“和諧區(qū)間”.

2求證:函數(shù)不存在“和諧區(qū)間”.

3已知:函數(shù)aR,a0有“和諧區(qū)間”[m,n],當a變化時,求出n﹣m的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),

1)討論函數(shù)的單調性;

2)當, 恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知(m,n為常數(shù)),在處的切線方程為

(Ⅰ)求的解析式并寫出定義域;

(Ⅱ)若,使得對上恒有成立,求實數(shù)的取值范圍;

(Ⅲ)若有兩個不同的零點,求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在直角梯形中,,,、分別是、的中點,將三角形沿折起,則下列說法正確的是______________.

1)不論折至何位置(不在平面內),都有平面

2)不論折至何位置,都有

3)不論折至何位置(不在平面內),都有;

4)在折起過程中,一定存在某個位置,使.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】定義:若數(shù)列滿足,存在實數(shù),對任意,都有,則稱數(shù)列有上界,是數(shù)列的一個上界,已知定理:單調遞增有上界的數(shù)列收斂(即極限存在).

(1)數(shù)列是否存在上界?若存在,試求其所有上界中的最小值;若不存在,請說明理由;

(2)若非負數(shù)列滿足,),求證:1是非負數(shù)列的一個上界,且數(shù)列的極限存在,并求其極限;

(3)若正項遞增數(shù)列無上界,證明:存在,當時,恒有.

查看答案和解析>>

同步練習冊答案