解:(I)函數(shù)定義域?yàn)閤>0,且f′(x)=2x-(a+2)x+

=

…(2分)
①當(dāng)a≤0,即

時,令f'(x)<0,得0<x<1,函數(shù)f(x)的單調(diào)遞減區(qū)間為(0,1),
令f'(x)>0,得x>1,函數(shù)f(x)的單調(diào)遞增區(qū)間為(1,+∞).
②當(dāng)

,即0<a<2時,令f'(x)>0,得

或x>1,
函數(shù)f(x)的單調(diào)遞增區(qū)間為

,(1,+∞).
令f'(x)<0,得

,函數(shù)f(x)的單調(diào)遞減區(qū)間為

.
③當(dāng)

,即a=2時,f'(x)≥0恒成立,函數(shù)f(x)的單調(diào)遞增區(qū)間為(0,+∞).…(7分)
(Ⅱ)①當(dāng)a≤0時,由(Ⅰ)可知,函數(shù)f(x)的單調(diào)遞減區(qū)間為(0,1),f(x)在(1,2]單調(diào)遞增.
所以f(x)在(0,2]上的最小值為f(1)=a+1,
由于

,
要使f(x)在(0,2]上有且只有一個零點(diǎn),
需滿足f(1)=0或

解得a=-1或a<-

.
②當(dāng)0<a≤2時,由(Ⅰ)可知,
(。┊(dāng)a=2時,函數(shù)f(x)在(0,2]上單調(diào)遞增;
且

,所以f(x)在(0,2]上有且只有一個零點(diǎn).
(ⅱ)當(dāng)0<a<2時,函數(shù)f(x)在

上單調(diào)遞減,在(1,2]上單調(diào)遞增;
又因?yàn)閒(1)=a+1>0,所以當(dāng)

時,總有f(x)>0.
因?yàn)閑

<1<a+2,
所以f(e

)=e

[e

-(a+2)]+(alne

+2a+2)<0.
所以在區(qū)間(0,

)內(nèi)必有零點(diǎn).又因?yàn)閒(x)在(0,

)內(nèi)單調(diào)遞增,
從而當(dāng)0<a≤2時,f(x)在(0,2]上有且只有一個零點(diǎn).
綜上所述,0<a≤2或a<-

或a=-1時,f(x)在(0,2]上有且只有一個零點(diǎn).…(13分)
分析:(I)先求函數(shù)的定義域再求函數(shù)的導(dǎo)數(shù),當(dāng)導(dǎo)數(shù)大于0時函數(shù)單調(diào)遞增,當(dāng)導(dǎo)數(shù)小于0時單調(diào)遞減.
(II)此題考查的是函數(shù)的零點(diǎn)存在問題.在解答的過程當(dāng)中要先結(jié)合函數(shù)f(x)在區(qū)間(0,2]內(nèi)有且只有一個零點(diǎn)的條件,結(jié)合(I)中確定函數(shù)的增減區(qū)間,求出函數(shù)的極小值和極大值,再轉(zhuǎn)化出不等關(guān)系,利用此不等關(guān)系即可獲得問題的解答.
點(diǎn)評:此題考查的是利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,函數(shù)的零點(diǎn)存在問題.在解答的過程當(dāng)中充分體現(xiàn)了等價轉(zhuǎn)化的思想,以及零點(diǎn)定理的相關(guān)知識.值得同學(xué)們體會反思.