欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

18.過雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a,b>0)$的右焦點(diǎn)F作漸近線的垂線,垂足為P,過P作y軸的垂線交另一漸近線為Q,若△OFP的面積是△OPQ的面積的4倍,則雙曲線的離心率為(  )
A.$\frac{\sqrt{5}}{2}$B.$\sqrt{2}$C.2$\sqrt{2}$D.$\sqrt{5}$

分析 求出雙曲線的漸近線方程,運(yùn)用兩直線垂直的條件:斜率之積為-1,可得PF的方程,聯(lián)立漸近線方程,解得交點(diǎn)P的坐標(biāo),由對稱性可得Q的坐標(biāo),運(yùn)用三角形的面積公式,結(jié)合離心率公式,即可得到所求值.

解答 解:雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a,b>0)$的漸近線方程為y=±$\frac{a}$x,
右焦點(diǎn)F(c,0),
由題意可得直線PF的方程為y=-$\frac{a}$(x-c),
聯(lián)立漸近線方程y=$\frac{a}$x,可得P($\frac{{a}^{2}}{c}$,$\frac{ab}{c}$),
由對稱性可得Q(-$\frac{{a}^{2}}{c}$,$\frac{ab}{c}$),
由△OFP的面積是△OPQ的面積的4倍,
可得$\frac{1}{2}$c•$\frac{ab}{c}$=4•$\frac{1}{2}$•$\frac{2{a}^{2}}{c}$•$\frac{ab}{c}$,
即有c2=8a2,e=$\frac{c}{a}$=2$\sqrt{2}$,
故選:C.

點(diǎn)評 本題考查雙曲線的離心率的求法,注意運(yùn)用雙曲線的漸近線方程,以及三角形的面積公式,考查化簡整理的運(yùn)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.設(shè)x1、x2是方程x2+3$\sqrt{3}$x+4=0的兩根,求arctanx1+arctanx2的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.在等差數(shù)列{an}中,若a12=11,a45=110,求:
(1)數(shù)列的通項(xiàng)公式;
(2)161是不是它的項(xiàng),若是,是第幾項(xiàng)?若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知拋物線C的頂點(diǎn)在坐標(biāo)原點(diǎn),準(zhǔn)線方程為x=-1,直線l與拋物線C相交于A,B兩點(diǎn).若線段AB的中點(diǎn)為(2,1),則直線l的方程為( 。
A.y=2x-3B.y=2x-1C.y=x-3D.y=x-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.2015年上海國際機(jī)動(dòng)車尾氣凈化及污染控制研討會(huì)在上海召開,大會(huì)一致決定,加強(qiáng)對汽車碳排放量的嚴(yán)控,汽車是碳排放量比較大的行業(yè)之一,我市規(guī)定,從2015年開始,將對二氧化碳排放量超130g/km的輕型汽車進(jìn)行懲罰性征稅.檢測單位對甲、乙兩品牌輕型汽車各抽取5輛進(jìn)行二氧化碳排放量檢測,記錄如下(單位:g/km).
80110120140150
100120x100160
經(jīng)測算得乙品牌輕型汽車二氧化碳排放量的平均值為$\overline{{x}_{乙}}$=120g/km.
(Ⅰ)求表中x的值,并比較甲、乙兩品牌輕型汽車二氧化碳排放量的穩(wěn)定性;
(Ⅱ)從被檢測的5輛甲品牌輕型汽車中任取2輛,則至少有一輛二氧化碳排放量超過130g/km的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.化簡復(fù)數(shù)$\frac{1+\sqrt{3}i}{1-i}$(其中i為虛數(shù)單位)的結(jié)果是(  )
A.$\frac{1-\sqrt{3}}{2}$+$\frac{1+\sqrt{3}}{2}$iB.$\frac{1-\sqrt{3}}{2}$-$\frac{1+\sqrt{3}}{2}$iC.$\frac{1+\sqrt{3}}{2}$+$\frac{1-\sqrt{3}}{2}$iD.$\frac{1+\sqrt{3}}{2}$-$\frac{1-\sqrt{3}}{2}$i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.設(shè)x,y滿足$\left\{\begin{array}{l}{y≤x}\\{x+y≥2}\\{y≥3x-6}\end{array}\right.$,則z=2x+y的最小值為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.設(shè)命題p:函數(shù)f(x)=ex在R上為增函數(shù);命題q:函數(shù)f(x)=cos2x為奇函數(shù),則下列命題中真命題是( 。
A.p∧qB.(¬p)∨qC.(¬p)∧(¬q)D.p∧(¬q)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知雙曲線C的方程$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{5}$=1,其左、右焦點(diǎn)分別是F1,F(xiàn)2,已知點(diǎn)M坐標(biāo)為(2,1).雙曲線C上點(diǎn)P(x0,y0)(x0>0,y0>0)滿足$\overrightarrow{OM}$=$\overrightarrow{OP}$+λ($\frac{\overrightarrow{P{F}_{1}}}{|\overrightarrow{P{F}_{1}}|}$+$\frac{\overrightarrow{P{F}_{2}}}{|P{F}_{2}|}$),則S${\;}_{△PM{F}_{1}}$-S${\;}_{△PM{F}_{2}}$=2.

查看答案和解析>>

同步練習(xí)冊答案