欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

精英家教網 > 高中數學 > 題目詳情
19.已知x,y滿足不等式組$\left\{\begin{array}{l}{x-y+1≥0}\\{x+y-1≥0}\\{3x-y≤0}\end{array}\right.$,則目標函數z=2x-y的最小值為-1.

分析 由約束條件作出可行域,化目標函數為直線方程的斜截式,數形結合得到最優(yōu)解,把最優(yōu)解的坐標代入目標函數得答案.

解答 解:由約束條件$\left\{\begin{array}{l}{x-y+1≥0}\\{x+y-1≥0}\\{3x-y≤0}\end{array}\right.$作出可行域如圖,

化目標函數z=2x-y為y=2x-z,
由圖可知,當直線y=2x-z過A(0,1)時,直線在y軸上的截距最大,z有最小值為-1.
故答案為:-1.

點評 本題考查簡單的線性規(guī)劃,考查了數形結合的解題思想方法,是中檔題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

9.若集合A=$\left\{{x||{x-m}|<2}\right\},B=\left\{{x|y=\frac{2}{{\sqrt{2-x-{x^2}}}}}\right\}$,若B⊆A,求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

10.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{2}$=1,其雙曲線的右焦點與拋物線y2=4$\sqrt{3}$x的焦點重合,則該雙曲線的方程為${x}^{2}-\frac{{y}^{2}}{2}$=1.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

7.等比數列{an}中,a3=9前三項和為S3=${∫}_{0}^{3}$3x2dx,則公比q的值是1或-$\frac{1}{2}$.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

14.已知函數f(x)=(log${\;}_{\frac{1}{4}}$x)2-log${\;}_{\frac{1}{4}}$x+5,x∈[1,4],求f(x)的最大值和最小值及對應的x值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

4.(1)已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)和橢圓$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{9}$=1有相同的焦點,且雙曲線的離心率是橢圓離心率的2倍,求雙曲線的方程.
(2)已知點P(6,8)是橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)上一點,F1,F2為橢圓的兩焦點,若$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$=0.試求橢圓的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

11.以下命題中:
①設有一個回歸方程$\widehat{y}$=2-3x,變量x增加一個單位時,y平均增加3個單位;
②兩個隨機變量的線性相關性越強,則相關系數的絕對值越接近于1;
③在某項測量中,測量結果ξ服從正態(tài)分布N(1,σ2)(σ>0).若ξ在(0,1)內取值的概率為0.4,則ξ在(0,2)內取值的概率為0.8.
④將八進制數135(8)轉化為二進制數是1011101(2)
其中真命題的個數為(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

8.已知F1,F2分別是雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a,b>0)的左、右焦點,l1,l2為雙曲線的兩條漸近線.設過點M(b,0)且平行于l1的直線交l2于點P.若PF1⊥PF2,則該雙曲線的離心率為( 。
A.$\sqrt{3}$B.$\sqrt{5}$C.$\frac{\sqrt{14-2\sqrt{41}}}{2}$D.$\frac{\sqrt{14+2\sqrt{41}}}{2}$

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

9.計算
(1)$\frac{2lg2+lg3}{{\frac{1}{2}lg36-lg\frac{1}{2}}}+{log_4}({8^7}×{2^5})$
(2)$\frac{{\sqrt{1-2sin{{2530}°}cos{{1430}°}}}}{{cos{{1790}°}-\sqrt{1-{{cos}^2}{{170}°}}}}$.

查看答案和解析>>

同步練習冊答案