分析 (1)由條件利用三角恒等變換化簡f(α),可得結果.
(2)由條件利用基本不等式求得α=$\frac{π}{6}$或α=$\frac{5π}{6}$時f(α)=1;由f(α)=sinβ≤1,可得sinβ=1,從而求得β 的值
解答 解:(1)∵α,β∈(0,π),∴f(α)=$\frac{3-2cos2α}{4sinα}$=$\frac{3-2(1-{2sin}^{2}α)}{4sinα}$=$\frac{1+{4sin}^{2}α}{4sinα}$.
(2 )∵α,β∈(0,π),∴0<sinα、sinβ≤1,由f(a)=$\frac{1+{4sin}^{2}α}{4sinα}$=$\frac{1}{4sinα}$+sinα≥1,
當且僅當$\frac{1}{4sinα}$=sinα,即sinα=$\frac{1}{2}$,即α=$\frac{π}{6}$或α=$\frac{5π}{6}$時,等號成立.
即f(α)≥1.
而f(α)=sinβ≤1,∴sinβ=1,∴β=$\frac{π}{2}$.
綜上可得,α=$\frac{π}{6}$或α=$\frac{5π}{6}$;β=$\frac{π}{2}$.
點評 本題主要考查三角恒等變換,基本不等式的應用,根據(jù)三角函數(shù)的值求角,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | 2<x<3 | B. | x>3或x<2 | C. | -3<x<-2 | D. | 不存在 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | 3 | B. | 4 | C. | 5 | D. | 6 |
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com