欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

12.若數(shù)列{an}滿足a1=1,且對(duì)于任意的n∈N*都有an+1=an+n+1,則$\frac{1}{a_1}+\frac{1}{a_2}+…+\frac{1}{{{a_{2006}}}}$等于( 。
A.$\frac{4030}{2016}$B.$\frac{2015}{2016}$C.$\frac{4032}{2017}$D.$\frac{2016}{2017}$

分析 由所給的式子得an+1-an=n+1,給n具體值列出n-1個(gè)式子,再他們加起來,求出an,再用裂項(xiàng)法求出$\frac{1}{{a}_{n}}$,然后代入進(jìn)行求值$\frac{1}{{a}_{1}}+\frac{1}{{a}_{2}}+…+\frac{1}{{a}_{2016}}$的值,

解答 由an+1=an+n+1得,an+1-an=n+1,
則a2-a1=1+1,
a3-a2=2+1,
a4-a3=3+1

an-an-1=(n-1)+1,
以上等式相加,得an-a1=1+2+3+…+(n-1)+n-1,
把a(bǔ)1=1代入上式得,an=1+2+3+…+(n-1)+n=$\frac{n(n+1)}{2}$
$\frac{1}{{a}_{n}}=\frac{2}{n(n+1)}$=2($\frac{1}{n}-\frac{1}{n+1}$)
則$\frac{1}{{a}_{1}}+\frac{1}{{a}_{2}}+…+\frac{1}{{a}_{2016}}$=2[(1-$\frac{1}{2}$)+($\frac{1}{2}-\frac{1}{3}$)+…+($\frac{1}{2016}-\frac{1}{2017}$)
=2(1-$\frac{1}{2017}$)
=$\frac{4032}{2017}$,
故答案選:C.

點(diǎn)評(píng) 本題主要考察數(shù)列的求和、利用累加法求數(shù)列的通項(xiàng)公式,以及裂項(xiàng)相消法求數(shù)列的前n項(xiàng)和,這是數(shù)列?嫉姆椒ǎ枰炀氄莆,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.求值:tan15°-tan45°+$\frac{\sqrt{3}}{3}$tan15°•tan45°=-$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知首項(xiàng)為$\frac{1}{2}$的等比數(shù)列{an}是遞減數(shù)列,且${a_1},\frac{3}{2}{a_2},2{a_3}$成等差數(shù)列;數(shù)列{bn}的前n項(xiàng)和為Sn,且${S_n}={n^2}+n$,n∈N*
(Ⅰ)求數(shù)列{an},{bn}的通項(xiàng)公式;
(Ⅱ)已知${c_n}=\frac{{{b_{n+1}}}}{2}•{log_2}{a_n}$,求數(shù)列{$\frac{1}{c_n}$}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.設(shè)i為虛數(shù)單位,則復(fù)數(shù)$\frac{2+i}{1-2i}$=i.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知命題p:?x∈R,ex>1;命題q:?x0∈R,x0-2>log2x0,則下列命題中為真命題的是( 。
A.p∧qB.¬p∧qC.p∧¬qD.¬p∧¬q

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)$f(x)=ax+{log_2}({2^x}+1)$,其中a∈R.
(1)根據(jù)a的不同取值,討論f(x)的奇偶性,并說明理由;
(2)已知a>0,函數(shù)f(x)的反函數(shù)為f-1(x),若函數(shù)y=f(x)+f-1(x)在區(qū)間[1,2]上的最小值為1+log23,求函數(shù)f(x)在區(qū)間[1,2]上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知函數(shù)f=$\left\{\begin{array}{l}{{2}^{x+2},x<0}\\{{x}^{3},x≥0}\end{array}\right.$,則f[f(-1)]=8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知各項(xiàng)均不為0的數(shù)列{an}的前n項(xiàng)和為Sn,對(duì)任意正整數(shù)n,有4Sn=(2n+1)an+1.
(1)求a1的值及數(shù)列{an}的通項(xiàng)公式;
(2)對(duì)一切正整數(shù)n,設(shè)bn=$\frac{(-1)^{n}4n}{{a}_{n}•{a}_{n+1}}$,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知集合A={x|-1<x≤3},B={-2,-1,0,3,4},則A∩B=( 。
A.{0}B.{0,3}C.{-1,0,3}D.{0,3,4}

查看答案和解析>>

同步練習(xí)冊(cè)答案