已知橢圓的兩個焦點坐標(biāo)分別是
,
,并且經(jīng)過點
,求它的標(biāo)準(zhǔn)方程.
.
解析試題分析:解題思路:根據(jù)條件設(shè)出橢圓的標(biāo)準(zhǔn)方程,再代點求系數(shù)即可.規(guī)律總結(jié):求圓錐曲線的標(biāo)準(zhǔn)方程通常用待定系數(shù)法,即先根據(jù)條件設(shè)出合適的標(biāo)準(zhǔn)方程,再根據(jù)題意得到關(guān)于系數(shù)的方程或方程組,解之積得.
試題解析:因為橢圓的焦點在x軸上,所以設(shè)它的標(biāo)準(zhǔn)方程為
,
由橢圓的定義知
,
所以
.
又因為
,
所以
,
所以橢圓的標(biāo)準(zhǔn)方程為
.
考點:橢圓的標(biāo)準(zhǔn)方程.
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知拋物線
的焦點為F2,點F1與F2關(guān)于坐標(biāo)原點對稱,直線m垂直于x軸(垂足為T),與拋物線交于不同的兩點P,Q且
.
(I)求點T的橫坐標(biāo)
;
(II)若以F1,F2為焦點的橢圓C過點
.
①求橢圓C的標(biāo)準(zhǔn)方程;
②過點F2作直線l與橢圓C交于A,B兩點,設(shè)
,若
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)橢圓C∶
+
=1(a>b>0)過點(0,4),離心率為
.
(1)求C的方程;
(2)求過點(3,0)且斜率為
的直線被C所截線段的中點坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知拋物線C:
的焦點為F,
ABQ的三個頂點都在拋物線C上,點M為AB的中點,
.(1)若M
,求拋物線C方程;(2)若
的常數(shù),試求線段
長的最大值.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖所示,在平面直角坐標(biāo)系
中,設(shè)橢圓
,其中
,過橢圓
內(nèi)一點![]()
的兩條直線分別與橢圓交于點
和
,且滿足
,
,其中
為正常數(shù). 當(dāng)點
恰為橢圓的右頂點時,對應(yīng)的
.
(1)求橢圓
的離心率;
(2)求
與
的值;
(3)當(dāng)
變化時,
是否為定值?若是,請求出此定值;若不是,請說明理由.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓
的左,右兩個頂點分別為
、
.曲線
是以
、
兩點為頂點,離心率為
的雙曲線.設(shè)點
在第一象限且在曲線
上,直線
與橢圓相交于另一點
.
(1)求曲線
的方程;
(2)設(shè)
、
兩點的橫坐標(biāo)分別為
,
,證明:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知△ABC的周長為12,頂點A,B的坐標(biāo)分別為(-2,0),(2,0),C為動點.
(1)求動點C的軌跡E的方程;
(2)過原點作兩條關(guān)于y軸對稱的直線(不與坐標(biāo)軸重合),使它們分別與曲線E交于兩點,求四點所對應(yīng)的四邊形的面積的最大值.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com