欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

10.在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且滿足2a=3b=4c,則$\frac{sin2A}{sinB+sinC}$=-$\frac{11}{14}$.

分析 設(shè)2a=3b=4c=k,則:a=$\frac{k}{2}$,b=$\frac{k}{3}$,c=$\frac{k}{4}$,由正弦定理可得:sinA=$\frac{k}{4R}$,sinB=$\frac{k}{6R}$,sinC=$\frac{k}{8R}$,由余弦定理可得cosA=-$\frac{11}{24}$,利用倍角公式代入即可求值.

解答 解:∵設(shè)2a=3b=4c=k,則:a=$\frac{k}{2}$,b=$\frac{k}{3}$,c=$\frac{k}{4}$,
∴由正弦定理$\frac{a}{sinA}=\frac{sinB}=\frac{c}{sinC}=2R$可得:sinA=$\frac{k}{4R}$,sinB=$\frac{k}{6R}$,sinC=$\frac{k}{8R}$,
由余弦定理可得:cosA=$\frac{^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{\frac{{k}^{2}}{9}+\frac{{k}^{2}}{16}-\frac{{k}^{2}}{4}}{2×\frac{k}{3}×\frac{k}{4}}$=-$\frac{11}{24}$.
∴$\frac{sin2A}{sinB+sinC}$=$\frac{2sinAcosA}{sinB+sinC}$=$\frac{2×\frac{k}{4R}×(-\frac{11}{24})}{\frac{k}{6R}+\frac{k}{8R}}$=-$\frac{11}{14}$.
故答案為:-$\frac{11}{14}$.

點(diǎn)評(píng) 本題主要考查了正弦定理,余弦定理,倍角公式在解三角形中的應(yīng)用,熟練掌握相關(guān)公式是解題的關(guān)鍵,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.求函數(shù)f(x)=sin$\frac{x}{2}$+cosx(x∈[0,2π])的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.解下列分式不等式,并把解集在數(shù)軸上表示
(1)$\frac{5-2x}{8+5x}$>0
(2)$\frac{3-4x}{1-2x}$≤1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知函數(shù)f(x)=$\left\{\begin{array}{l}{a(x-1)^{2}\\;x<1}\\{(a-3)x+4a\\;x≥1}\end{array}\right.$滿足對(duì)任意x1≠x2,都有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$<0,則a的取值范圍是( 。
A.(0,3)B.(0,3]C.(0,$\frac{3}{5}$)D.(0,$\frac{3}{5}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.若log23•log36m•log96=$\frac{1}{2}$,則實(shí)數(shù)m的值為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知直線mx+2y-6=0與直線x-y+5=0互相垂直,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.在△ABC中,交A,B,C的對(duì)邊分別為a,b,c,且1+$\frac{3}{5cos(A-B)cosB}$=tan(A-B)tanB.
(1)求sinA的值
(2)若a=4$\sqrt{2}$,b=5,求向量$\overrightarrow{BA}$在$\overrightarrow{BC}$方向上的投影.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.“α是鈍角”是“α是第二象限角”的(  )
A.充分非必要條件B.必要非充分條件
C.充要條件D.即不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.在等比數(shù)列{an}中,若a5a7a9=27,則$\frac{{{a}_{9}}^{2}}{{a}_{11}}$=( 。
A.9B.1C.2D.3

查看答案和解析>>

同步練習(xí)冊(cè)答案