欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

18.F是拋物線y2=4x的焦點(diǎn),P、Q是拋物線上兩點(diǎn),|PF|=2,|QF|=5,則|PQ|=( 。
A.3$\sqrt{5}$B.4$\sqrt{3}$C.3$\sqrt{5}$或$\sqrt{13}$D.3$\sqrt{5}$或4$\sqrt{3}$

分析 根據(jù)拋物線的性質(zhì)將|PF|,|QF|轉(zhuǎn)化為到準(zhǔn)線的距離,求出P,Q的坐標(biāo),得出答案.

解答 解:拋物線的準(zhǔn)線方程為x=-1,
∴|PF|=x1+1=2,|QF|=x2+1=5.
∴x1=1,x2=4.
∴P(1,±2),Q(4,±4),
∴|PQ|=$\sqrt{9+4}$=$\sqrt{13}$或$\sqrt{9+36}$=3$\sqrt{5}$
故選:C.

點(diǎn)評 本題考查了拋物線的性質(zhì),屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知橢圓$\frac{x^2}{m}+\frac{y^2}{n}=1$過點(diǎn)P(1,2),則m+n的最小值為9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知集合A={x|-5+21x-4x2<0},B={x∈Z|-3<x<6},則(∁RA)∩B的元素的個(gè)數(shù)為(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.在四菱錐P-ABCD中,PA⊥AD,PA=1,PC=PD,底面ABCD是梯形,AB∥CD,AB⊥BC,AB=BC=1,CD=2.
(I)求證:PA⊥AB;
(II)求直線AD與平面PCD所成角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.給出下列結(jié)論:
動點(diǎn)M(x,y)分別到兩定點(diǎn)(-4,0),(4,0)連線的斜率之乘積為-$\frac{9}{16}$,設(shè)M(x,y)的軌跡為曲線C,F(xiàn)1、F2分別為曲線C的左右焦點(diǎn),則下列命題中:
(1)曲線C的焦點(diǎn)坐標(biāo)為F1(-5,0),F(xiàn)2(5,0);
(2)曲線C上存在一點(diǎn)M,使得S△F1MF2=9;
(3)P為曲線C上一點(diǎn),P,F(xiàn)1,F(xiàn)2是直角三角形的三個(gè)頂點(diǎn),且|PF1|>|PF2|,$\frac{|P{F}_{1}|}{|P{F}_{2}|}$的值為$\frac{23}{9}$;
(4)設(shè)A(1,1),動點(diǎn)P在曲線C上,則|PA|+|PF1|的最大值為8+$\sqrt{9-2\sqrt{7}}$;
其中正確命題的序號是③④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.在△ABC中,∠A的角平分線交BC于點(diǎn)D,且AD=1,邊BC上的高AH=$\frac{1}{2}$,△ABD的面積是△ACD的面積的2倍,則BC=$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知橢圓$E:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的離心率為$\frac{{\sqrt{2}}}{2}$,又點(diǎn)$A({1,\sqrt{2}})$在該橢圓上.
(1)求橢圓E的方程;
(2)若斜率為$\sqrt{2}$的直線l與橢圓E交于不同的兩點(diǎn)B,C,求△ABC的最大面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.若x、y滿足$\left\{\begin{array}{l}y≥\frac{1}{2}x\\ y≤2x\\ x+4y≤9\end{array}\right.$,且z=x-ay的最大值為4,則實(shí)數(shù)a的值為$-\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2017屆湖南長沙長郡中學(xué)高三上周測十二數(shù)學(xué)(理)試卷(解析版) 題型:解答題

已知向量,函數(shù)

(1)若,求的值;

(2)在△中,角,,的對邊分別是,,且滿足,求角的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案